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Abstract: Water resources are the source of life and the basis of ecology, and medium- and 

long-term runoff forecasting plays an important role in the overall planning of water 

resources. However, complex factors such as climate change affect the formation of runoff, 

making the runoff process more complex and posing a great challenge to hydrological 

forecasting. Therefore, this paper investigates the medium- and long-term runoff 

forecasting in the Huaihe River basin based on machine learning. The paper takes the 

improvement of medium- and long-term runoff prediction accuracy as the background, and 

combines the specific requirements of practical projects and research ideas to characterise 

the runoff series in the Huaihe River basin. The results of runoff simulation and forecasting 

under future climate change are also analyzed using the BOA-EEMD-LSTM model. 

1. Introduction 

Runoff prediction is an important element in hydrological forecasting research. Its prediction 

results can provide a basis for flood and drought prevention, reservoir scheduling and hydropower 

generation, and the optimal allocation of water resources in the basin and regional development 

planning require the spatial distribution and dynamic changes of water resources [1-2]. Medium and 

long-term hydrological forecasts are scientific predictions of future hydrological conditions over a 

longer period of time based on preliminary hydro-meteorological data [3]. As an important part of 

disaster mitigation and prevention, medium- and long-term hydrological forecasting has been of 

great interest to the national economy [4]. Runoff forecasting involves multiple disciplines and 

fields, and the analysis of the spatial and temporal characteristics of runoff in the target basin is a 

prerequisite for medium- and long-term forecasting [5-6]. 

With the development of industry in China, water resources problems are becoming more and 

more prominent, and in this context many scholars have conducted research on medium- and 

long-term runoff forecasting with good results [7]. For example, Sara Parvinizadeh et al. proposed a 
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high-precision runoff prediction model based on machine learning that would improve early 

warning capability for floods and droughts, in which the GRNN model was selected as the optimal 

runoff prediction model, and the GRNN model used flood propagation time to predict flow and 

water level, and the results showed that the GRNN model performed well in runoff prediction [8]. A 

hybrid model for monthly runoff time series prediction was developed by Umut Keskin et al. A 

grey wolf optimiser was used to optimise the input hidden weights of the ELM method and a 

generalised inverse method was used to determine the hidden output weights, comparing the 

performance of various prediction methods, and simulation results showed that the method 

outperformed traditional prediction methods in several quantitative metrics [9]. The use of machine 

learning for prediction of runoff is a direction worthy of further investigation. 

The increasing prominence of water environment and water resources problems in the basin 

hinders coordinated regional development, so this paper investigates medium- and long-term runoff 

forecasting in the Huaihe River basin based on machine learning [10]. The main content of this 

paper is divided into three parts: the first part is the construction of the runoff prediction model, 

which mainly includes the setting of the simulation scenario and the model workflow; the second 

part is the single model analysis, which is divided into two parts of the research analysis, including 

the analysis of the influencing factors of runoff change and the single model prediction analysis; the 

third part is the analysis of the runoff prediction results, which mainly investigates the model 

validity and the future climate change under The third part is the analysis of runoff forecasting 

results, which focuses on the model validity and future runoff forecasting under climate change, and 

verifies the validity of the BOA-EEMD-LSTM model through the analysis. 

2. Construction of the Runoff Prediction Model 

2.1. Setting of the Simulation Scenario 

The core of the hydrological modelling approach is the reliability of the model and the strict 

control of variables [11]. In order to optimise the applicability of the model, a base period with a 

more moderate climate change over a longer time span and closer to the natural properties of the 

basin is used to derive the corresponding model parameters, which are then applied in subsequent 

simulations to ensure that the runoff values obtained from the model are closer to the natural runoff 

generated by the corresponding scenario [12-13]. In the comparative analysis, the most reasonable 

set of parameters was used to carry out the simulations and ensure that the input conditions were 

identical for each scenario except for the input variables to be studied, to ensure that the model 

simulation errors were kept to a minimum [14-15]. Scenarios K1 and K3 were set to differ only in 

meteorological data, and only in land use between scenarios K2 and K3. 

The model simulation results in unaffected natural runoff. The difference between the measured 

flow L2 in the change period (2007-2022) and the measured flow L1 in the base period (1995-2006) 

is the value of runoff change due to the combined effect of climate change, land use change and 

human activities. The specific calculations are as follows. 

21 PPLA                                 (1) 

13 KKB PPL 
                              (2) 

32 KKC PPL 
                              (3) 
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 CBAD QLLL 
                         (4) 

LK1, LK2 and LK3 represent the annual runoff volumes (m3/s) simulated by the SWAT model 

under the K1, K2 and K3 hydrological simulation scenarios, respectively. The unit of runoff data 

used in the calculation is the multi-year average runoff (m3/s). 

2.2. Model Workflow 

This section proposes a prediction model approach based on a combination of Bayesian 

optimization, an integrated empirical modal decomposition algorithm and a long and short term 

memory neural network. The Bayesian optimization algorithm is used to find the hyperparameters 

in the algorithm, the EEMD algorithm is used to process the data, and finally the LSTM is used to 

predict each sub-series and synthesize the components to obtain the final runoff prediction results. 

The BOA-EEMD-LSTM model is based on the "optimisation-decomposition-prediction-synthesis" 

process, and the model workflow is shown in Figure 1. 

Step 1: Pre-process the data, read the runoff series, and normalise the data set [16]. 

Step 2: The BOA algorithm is used to optimise the hyperparameters of the LSTM network model 

to obtain the optimised hyperparameter result values [17]. 

Step 3: Decomposition of the runoff data into residual series Res and K intrinsic modal functions 

IMF using signal processing EEMD. 

Step 4: The runoff sequence components are input into the LSTM for training, and the trained 

model is validated using a test set. 

Step 5: The data are subjected to an inverse normalisation operation and the accuracy evaluation 

metric is used for model evaluation [18]. 
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Figure 1. Flow chart of runoff prediction 
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3. Single Model Analysis 

3.1. Analysis of Factors Influencing Runoff Changes 

The causes of runoff changes in the Huaihe River basin are briefly analysed through the changes 

in rainfall characteristic values and flood characteristic values. Indicators such as multi-year 

average rainfall, rainfall ephemeris, average rainfall intensity, flood ephemeris, receding ephemeris, 

flood peak flow, minimum daily flow during flood season and basin storage capacity were selected 

to analyse the causes of changes in runoff mechanisms. The values of the variation of each indicator 

are shown in Table 1. 

Table 1. Variation in flow production at different stages 

 Base period Change period Rate of change(%) 

Average annual rainfall (mm) 876.4 867.9 -0.97 

Rainfall duration (h) 64.7 69.1 6.8 

Flood duration (h) 275.3 297.5 8.06 

Water recession duration (h) 20.8 24.2 16.35 

Peak discharge (m
3
/s) 865.6 824.8 -4.71 

Minimum daily flow in flood season (m
3
/s) 1.55 1.87 17.11 

Basin storage capacity (mm) 79.68 88.63 11.23 

 

As can be seen from Table 1, the rainfall factors do not change much in both the base and change 

periods, with rainfall only decreasing by 0.97% in the change period relative to the base period, and 

factors such as rainfall ephemeris not changing much in the two periods, but flood ephemeris and 

receding ephemeris increase by 8.06% and 16.35%, and the trends in rainfall and flood 

characteristic values such as peak flow and flood ephemeris are not consistent, indicating that 

rainfall is not the This indicates that rainfall is not the main influence on the change of these flood 

characteristics. In addition, according to the data in Table 1, the minimum daily flow during the 

flood season increased by 17.11% over the two phases of change, and the basin storage capacity 

increased from 79.68mm to 88.63mm, and the changes in these characteristic values are closely 

related to the increase in the area of vegetation such as forest and grass. The increase in vegetation 

leads to an increase in soil water retention, resulting in an increase in flood ephemeris, a decrease in 

peak flow and an increase in basin storage capacity, thus inferring that changes in substrate 

conditions in the Huaihe River basin are the main cause of the changes in flood characteristics and 

the main factor in the changes in runoff regime in the Huaihe River basin. 

3.2. Single Model Prediction Analysis 

In recent years, with the continuous development of computer technology, artificial intelligence 

algorithms have been extended to various fields, and have been applied in the field of runoff 

prediction. SVR, SARIMA and LSSVM are representative machine learning algorithms, and single 

model prediction is carried out for these three methods and described for each model separately. 

The results of the single model prediction comparison are shown in Table 2. 

As observed in Table 2, the SARIMA model has the highest NSE and r values among the three 

models. The Nash efficiency coefficient NSE of the SARIMA model increased by 92.59% and 

51.27% compared to the SVR and LSSVM models respectively, and the correlation coefficient R of 

the SARIMA model increased by 45.48% and 33.10% compared to the ELM and LSSVM models 
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respectively. This represents the higher accuracy of the SARIMA model runoff prediction and the 

stronger correlation between the predicted and original series. Of the three models, the SARIMA 

model achieved the lowest values of RMSE, MAE and MAPE. SARIMA model is relatively 

accurate because it takes into account the seasonality factor, but the traditional time series model 

SARIMA also has disadvantages such as: high data requirements (requiring the time series to be 

stable, or stable after differencing), prediction accuracy decreases with time, focusing on univariate 

data with linear relationships and fixed manual diagnostic time dependence, etc.; low SVR 

generalisation error rate, low computational overhead, easy to interpret the results, but the 

parameter selection has a large impact; LSTM is simple to implement and has better convergence, 

and is less prone to gradient disappearance or explosion. The LSTM is simple to implement, has 

better convergence, and is less prone to problems such as gradient disappearance or explosion, and 

does not require operations such as data differencing compared to SARIMA, but requires certain 

requirements for model tuning, and the model computation time is relatively long, so some 

subsequent optimisation is required to obtain better prediction results. Therefore, a single prediction 

model is not suitable for medium and long-term runoff forecasting. 

Table 2. Single model prediction error comparison 

 SVR LSTM SARIMA 

R 0.398 0.435 0.579 

NSE 0.216 0.275 0.416 

RMSE(m
3
) 5346.72 4187.44 3862.75 

MAPE(m
3
) 0.379 0.275 0.125 

MAE(m
3
) 3316.78 2978.25 2153.89 

4. Analysis of Runoff Forecasting Results 

4.1. Analysis of Model Validity 

The prediction accuracy of all prediction models was compared and the results are shown in 

Table 3. 

Table 3. Comprehensive comparison results 

 RMSE(m
3
) MAE(m

3
) MAPE(m

3
) DC Accuracy judgment 

BOA-EEMD-LSTM 2057.68 1657.34 0.114 0.97 A 

EMD-LSTM 2925.75 2146.77 0.138 0.88 B 

EEMD-BP 2675.36 1846.53 0.119 0.91 B 

SVR 5346.72 3316.78 0.379 0.72 C 

LSTM 4187.44 2978.25 0.275 0.78 C 

SARIMA 3862.75 2135.89 0.125 0.85 B 

As can be seen from Table 3, the BOA-EEMD-ISTM model can fit the data better, and in runoff 

prediction, the forecast accuracy is divided into four grades: ABC and unqualified forecast, which 

represent the forecast accuracy grade in actual forecasting work. the BOA-EEMD-ISTM model 

achieves a forecast accuracy of 0.97, with an accuracy grade of A, which is higher than the single 

model SVR, LSTM, and The forecast accuracy of the BOA-EEMD-ISTM model is the highest 

among all the models, which indicates that it can reach the level of qualified forecasts in practical 

applications. Overall the BOA-EEMD-LSTM model has the best prediction accuracy, proving the 

effectiveness of the proposed model. 



Machine Learning Theory and Practice 

6 
 

4.2. Analysis of Runoff Forecasting under Future Climate Change 

Precipitation, maximum and minimum temperatures for the future period (2022-2030) were used 

as input data for the meteorological variables in the BOA-EEMD-LSTM model, and the 

BOA-EEMD-LSTM model was used to simulate future runoff. The analysis of future runoff 

changes used the observed values from 1995-2006 as the base period runoff, and the simulation 

scenarios were as described in 2.1 of this paper. The results of future runoff changes are shown in 

Figure 2, and the future monthly runoff changes are shown in Figure 3. 

 

Figure 2. Changes in runoff under different scenarios 

It can be seen from Figure 2 that the future runoff for scenario K1 has large interannual 

fluctuations, with the years 2022, 2023 and 2024 decreasing by 316.78 m3/s, 213.79 m3/s and 

114.24 m3/s, respectively, and the years 2027 and 2028 decreasing by 153.75 m3/s and 224.68 m3/s, 

respectively, while the years 2025, 2026 and 2029 runoff shows an increasing trend, and its changes 

are generally consistent with the precipitation trends in the corresponding years. Scenario K3 shows 

small inter-annual fluctuations in future runoff, all showing a decreasing trend. The lower future 

runoff in 2022, 2026 and 2027 indicates a higher probability of drought and a significant reduction 

in river runoff in those years. Overall, scenarios K1 and K3 show an overall decreasing trend in 

future runoff. 

As can be seen in Figure 3, compared to the base period, the greatest reduction in runoff is seen 

in June and July for scenarios K1 and K3, with June runoff at 977 m3/s for scenario K1 and 876 

m3/s for scenario K3, and July runoff at 875 m3/s for scenario K1 and 819 m3/s for scenario K3, 

with less change in the remaining months. The runoff under both scenarios shows a decreasing 

trend, which is consistent with the monthly precipitation trend. In addition the runoff in 
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August-September under the future scenario is larger, increasing the probability of causing autumn 

floods, suggesting that abnormal climate changes may intensify due to the combined effects of El 

Niño and La Niña events. Overall, the future scenario shows a general trend of decreasing monthly 

runoff and an increased probability of autumn flooding. 

 

Figure 3. Projected monthly runoff changes 

5. Conclusion 

As the level of social science and technology continues to improve, the level of China's ability to 

unify water resources management and allocation and basin water regulation continues to rise, so 

the reliability of the methods and results of medium- and long-term runoff forecasting face higher 

requirements, highlighting the importance of medium- and long-term runoff forecasting. In this 

paper, a BOA-EEMD-LSTM medium- and long-term runoff forecasting model is constructed based 

on machine learning in the Huaihe River basin. By comparing the model with a single model and a 

composite model, it is found that the BOA-EEMD-LSTM model has the best prediction accuracy of 

0.97, which proves the effectiveness of the model. The overall trend of runoff decreases and the 

probability of autumn flooding increases. There are many areas for improvement in this paper. 
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