
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2020.010105

ISSN 2790-0916 Vol. 1, Issue 1: 34-41

Copyright: © 2020 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

34

Collaborative Optimization Method for Distributed

Systems based on Deep Learning

Shaam Daparvar
*

Chandigarh University, India

*
corresponding author

Keywords: Deep Learning, Neural Network, Distributed System, Collaborative

Optimization

Abstract: In the past decade, machine learning technology based on deep neural networks

has made great progress, thanks to the continuous development of HPC hardware and

software and practical applications. There are already a number of organizations and

enterprises offering services to the public based on machine learning systems, such as face

and speech recognition, photo optimization, and so on. Deep neural networks also require

different computational power, so the demand for distributed neural network systems is

also increasing. This paper mainly studies the collaborative optimization method of

distributed systems based on deep learning. In this paper, a new distributed deep learning

training system is designed and implemented by effectively combining cluster resource

scheduling and distributed training based on the advantages of Pytorch in rapid neural

network construction and parallel computing and cluster resource scheduling.

1. Introduction

Optimization theory is one of the important components in the theoretical research of cybernetics

and operations research, and optimization problems widely exist in many engineering and scientific

fields such as machine learning and artificial intelligence in real life [1-2]. Since the 1940s and

1950s, with the great progress of convex analysis theory and computer technology, optimization

theory has also got a great development. With the rapid development of communication and

microelectronics technology, emerged a large number of low-cost, high-performance miniature

calculators and sensors, this for the realization of the distributed algorithm provides a good

hardware basis, and distributed processing way more and more get the favour of people, make

people turned to the study of distributed optimization algorithm (3-4). In simple terms, a distributed

optimization is a complex or large optimization task disassemble into several smaller tasks, and put

these small tasks assigned to a number of small processing system (i.e., a processing system), at the

Distributed Processing System

35

same time, these small processing system through communication and coordination between each

other to do this complex or large optimization task. How to communicate and coordinate among

these sub-processing systems is one of the key points and difficulties of distributed optimization

algorithms [5]. The theory and application of distributed optimization have become an important

research topic in the field of control and system science. How to design effective distributed

optimization algorithms and analyze convergence and complexity has become one of the important

tasks of optimization research.

Distributed optimization problems widely exist in many fields such as data regression, machine

learning, model predictive control, smart grid, robot motion planning, state control system and so

on [6]. For example, the problem of electric energy production and distribution in a power system

can be formulated as a constrained distributed optimization problem, whose purpose is to find an

optimal generation and transportation strategy that can minimize the total cost of power generation

and transportation in the power system while meeting the capacity constraints of generation and

transportation [7]. Many classical optimization algorithms (such as gradient descent method,

conjugate gradient method, adjacent gradient method, etc.) can solve the above distributed

optimization problems based on global information, but with the advent of the era of big data, these

algorithms are increasingly unable to meet people's needs. This motivates scholars to design and

study algorithms (such as distributed optimization algorithms) that can solve large-scale

optimization problems [8].

Aiming at the hierarchical network architecture, this paper comprehensively studies the relevant

neural network optimization technology, proposes the distributed neural network algorithm and

architecture under the specific network architecture, tries to solve the problems encountered under

the distributed operation in the actual scenario, and improves the performance of distributed deep

neural network.

2. Optimization of Distributed Deep Learning System

2.1. Distributed Deep Learning

(1) Model parallelism and data parallelism

Distributed training can make full use of cluster resources to improve the speed. Generally,

operations need to be carried out according to the matching of hardware resources and data scale,

and computing tasks, sample division, distributed storage, distributed training and other aspects

need to be considered [9]. Data parallel mode is mainly refers to the data set, work assigned to each

node, different working nodes with multiple copies of a model, and then work nodes according to

their respective local copies of data and model of distribution, the model for training, we call this

kind of parallel mode "data parallel model", the classic data sample classification method has two

kinds: The first method is based on "random sampling". The advantage of random sampling is to

ensure that the local data on each machine is independent and identically distributed with the

original data, but the disadvantages are as follows: 1. The training data is large and the

computational complexity is high. 2. If the sampling times are too small, some samples may not be

selected, resulting in the underutilization of training samples and affecting the accuracy rate. The

second method is based on "scrambling and slicing". In this method, the training data is randomly

scrambled, and then the scrambled data is divided into uniform small pieces according to the

number of working nodes, and these small pieces of data are distributed to each working node.

Compared with the random sampling method, although the distribution of data is slightly different

from the original data distribution, the computational complexity of the scrambled segmentation

Distributed Processing System

36

method is much smaller than that of the global random sampling method. Moreover, the scrambled

segmentation method can retain every sample and intuitively make more full use of samples. Data

parallelism is a common way of distributed training, which has low requirements on configuration

and can be achieved in multi-threaded environment [10-11].

As long as the model parallel mode refers to that the scale of the deep learning model is too large

to be stored in the local memory, the model needs to be divided. Deploy different parts of the model

separately into multiple nodes. For highly nonlinear neural networks, each worker node cannot

complete the parameter training and update that it is responsible for relatively independently, and

must rely on other worker nodes for training. When a node fails, the integrity of the model cannot

be guaranteed, and model parallelism requires high configuration and costs too much. It is difficult

for non-researchers to have such an environment [12-13]. Another is a combination of data

parallelism and model parallelism called hybrid parallelism.

(2) Parameter server architecture

The parameter server architecture is a common architecture for distributed training. It has two

roles: a parameter server (server) and a worker (worker). The parameter server is responsible for

distributing the model and summarizing the gradient, and the worker is responsible for computing

and maintaining communication with the parameter server. The updating model can be divided into

synchronous updating and asynchronous updating [14].

Figure 1. Synchronously update the architecture diagram

More shinyo synchronization in the iteration process, the work node first qualifying examination

parameters obtained from the parameter server model, where each work node access is the same

parameters, and then work nodes for training, after the completion of the training to the server sends

parameters variation or gradient, parameters after the server to get all work node sends information

to carry on the average, The global model on the parameter server is updated by gradient descent

[15]. The synchronous update process is shown in Figure 1, and the formula is as follows:

  
k

k

k

tt g
n

g
11

1
 (1)

Client

Add

Update

P

Model1 Model2 Model3

worker worker worker

Distributed Processing System

37

11   ttt gww  (2)

Where, n represents the number of working nodes, K represents the number of nodes sent, λ is

the learning rate, G represents the gradient, and wt+1 represents the T + L round model. The

synchronization strategy has a clear structure and is not difficult to implement, so it is very suitable

for small-scale clusters. However, with the increasing size of the cluster, problems continue to

appear, such as configuration differences between machines, huge amount of network

communication information, and the most fatal thing is that one node fails and the whole training

will stop. Secondly, the computing and transmission delay is too long due to the imbalance of

cluster resources.

To make up for the synchronous update time consuming and low reliability of shortcomings,

puts forward the asynchronous update method (ASGD), parameters of server and work nodes using

asynchronous communication way to update parameters, when finish work node training a batch

when the server sends to the parameters, parameter server don't have to wait to finish all work node

training, but rather an update again, This way the whole training won't stop even if a node fails.

2.2. Overall Design of Distributed System

As shown in Figure 2, the distributed neural network system in this paper is generally divided

into two parts: the control side and the peer server. The main functions of the control end are to start

the system, establish the network simulation topology, run the peer server process in the network

simulation node, and control the actual operation of the peer server. The peer server is mainly

responsible for receiving commands from the control side, performing actual calculations,

communicating with other peer servers and other tasks. The whole system is mainly programmed

on the control side, and the distributed neural network algorithm is constructed through the API

exposed on the control side and combined with the neural network framework.

Figure 2. Overall system design

(1) Control end

Peer to peer server 2

Peer to peer server

1

Peer to peer server

3

Control site

UDS

Distributed Processing System

38

The control side is the part of the brain that controls and directs in a distributed neural network

system. By exposing the API, it programs users and completes most of the algorithm logic of the

system [6]. When the system is running, the controller executes the algorithm logic written by the

user and sends instructions to the peer server process in the corresponding network simulation node

in real time to instruct it to calculate or communicate with other nodes.

There is only one centralized control process in the whole system, which runs outside the

simulation network and communicates with the peer server through an independent delay-free

communication channel. Therefore, the system can establish a simulation network with arbitrary

topology structure, simulate a variety of network simulation scenarios, and ensure the ease of use of

the system through a centralized control terminal. Because the control side is independent of the

simulation network and does not actually belong to any part of the network topology, the centralized

control side does not cause the so-called single point of failure.

(2) Peer server

A peer server is a program that runs in a network simulation node and is started by a controller.

On the one hand, the peer server receives instructions from the control end through an independent

channel without delay, performs calculations and other logical functions, and returns the system

response (note, not the calculation results) [17]. On the other hand, the simulation network

communicates with peer servers in other simulation nodes to transmit the calculation results.

The peer server does not contain specific algorithm logic, does not need user programming, and

has full authority to receive the control of the control end, so the peer server is completely

transparent to the user. Logically, the execution flow is similar to executing algorithms directly on

network nodes. In terms of implementation, if the extra overhead of the system and the delay of the

independent communication channel are small enough, the actual execution effect of the system is

close to the direct execution of the algorithm on the network node. Therefore, the independent

communication channel needs to remain delay-free (actually low latency).

Although there are different types of nodes such as terminal, edge and cloud in the hierarchical

network structure, peer-to-peer servers are used uniformly in the distributed neural network system,

and all nodes are completely peer-to-peer in the system logic [18]. By imposing different

restrictions on each simulation node, such as computing power and delay, the nodes are made to

imitate the behavior of each layer in the hierarchical network structure.

3. System Test Environment

The test environment of the system mainly includes hardware environment and related software

environment. The underlying cluster of the system is mainly the Hadoop cluster environment. The

hardware environment of the system is shown in Table 1:

Table 1. Hardware environment

Equipment Quantity Configuration

Master node 1

Intel Core i5-12600

16G DDR4

500G Hard disk

Work node 4

Intel Core i5-10400

16G DDR4

500G Hard disk

Distributed Processing System

39

Software tools must be installed on each node in the cluster. The software environment is

shown in Table 2:

Table 2. Software environment

Software Version

Hadoop 2.0

Spark 2.0.1

Pytorch 0.4

Java Jdk 1.7

4. Analysis of System Test Results

The system in this paper provides the function of setting work node optimizer and parameter

server optimizer respectively, allowing users to set flexibly according to their needs. This

experiment mainly verifies the effectiveness of this function by configuring different learning rates.

Figure 3. The training curve of different learning rate of parameter server

In the experiment, the optimization algorithm adopted by the working node and the parameter

server node is stochastic gradient descent algorithm, and the parameter server node sets different

learning rates to record the distributed training effect, as shown in Figure 3.

According to the figure, when the learning rate of the working node is fixed, setting the learning

rate of the server with different parameters will also have different effects on the training effect. The

small learning rate on the parameter server will compress the accumulated updates of the worker

node, resulting in the waste of updates. If the learning rate of the parameter server is set to 1, it

means that the update of the working node is fully utilized. In this case, although the convergence

speed is fast, the update information from the working node may cause negative optimization due to

the gradient obsolescence problem, resulting in unstable training process and large shock. Therefore,

0

10

20

30

40

50

60

70

5 25 45 65

A
cc

u
ra

cy
(%

)

Training time(min)

0.2 0.4 0.6 1

Distributed Processing System

40

when the gradient obsolescence problem in distributed training is serious, the learning rate on

parameter server can be appropriately reduced to ensure the stability of training. Users can flexibly

select the optimizer algorithm and its parameter configuration to optimize the distributed training

task.

5. Conclusion

Nowadays, neural networks have been widely used in speech recognition, computer vision and

other fields. The complex practical requirements such as privacy protection and heterogeneous

devices have prompted the research of distributed neural networks in federated learning. The

layered network architecture derived from edge computing is a mature form of service application

network. This paper focuses on the research of distributed neural network algorithms and systems

for hierarchical network architecture, which is helpful to build practical applications and services

related to distributed neural networks, and facilitate the integration of edge computing and artificial

intelligence. Due to the limited ability of individuals, on the basis of the existing work, we need to

make the following improvements and improvements: further optimize the distributed neural

network simulation system, reduce its performance loss, improve the training speed, so as to reflect

the algorithm and model performance more accurately.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Chagraoui H, Soula M. Multidisciplinary collaborative optimization based on relaxation

method for solving complex problems:. Concurrent Engineering, 2020, 28(4):280-289.

https://doi.org/10.1177/1063293X20958921

[2] Ines A, Joao X. DJAM: distributed Jacobi asynchronous method for learning personal models.

IEEE Signal Processing Letters, 2018, PP(9):1-1.

[3] Mao W, Feng W, Liang X. A novel deep output kernel learning method for bearing fault

structural diagnosis. Mechanical Systems and Signal Processing, 2018, 117(FEB.15):293-318.

https://doi.org/10.1016/j.ymssp.2018.07.034

[4] Sattler F, Muller K R, Samek W. Clustered Federated Learning: Model-Agnostic Distributed

Multitask Optimization Under Privacy Constraints. IEEE Transactions on Neural Networks

and Learning Systems, 2020, PP(99):1-13.

[5] Rabhi S, Semchedine F, Mbarek N. An Improved Method for Distributed Localization in WSNs

Based on Fruit Fly Optimization Algorithm. Automatic Control and Computer Sciences, 2020,

Distributed Processing System

41

55(3):1-16. https://doi.org/10.3103/S0146411621030081

[6] Kavousi-Fard A, Dabbaghjamanesh M, Jin T, et al. An Evolutionary Deep Learning-Based

Anomaly Detection Model for Securing Vehicles. IEEE Transactions on Intelligent

Transportation Systems, 2020, PP(99):1-9.

[7] Saravanan G, Yuvaraj N. Cloud resource optimization based on poisson linear deep gradient

learning for mobile cloud computing. Journal of Intelligent and Fuzzy Systems, 2020,

40(1):1-11. https://doi.org/10.3233/JIFS-200799

[8] Hamdia K M, Ghasemi H, Bazi Y, et al. A novel deep learning based method for the

computational material design of flexoelectric nanostructures with topology optimization.

Finite Elements in Analysis and Design, 2019, 165(Nov.):21-30.

[9] Ko H, Pack S. Distributed Device-to-Device Offloading System: Design and Performance

Optimization. IEEE Transactions on Mobile Computing, 2020, PP(99):1-1.

[10] Samala R K, Kotapuri M R. Distributed Generation Allocation in Distribution System using

Particle Swarm Optimization based Ant-Lion Optimization. International Journal of Control

and Automation, 2020, 13(1):414-426.

[11] Tabasi M, Asgharian P. Optimal operation of energy storage units in distributed system using

social spider optimization algorithm. AIMS Electronics and Electrical Engineering, 2019,

3(4):309-327.

[12] Sameti M, Haghighat F. Optimization of 4th generation distributed district heating system:

Design and planning of combined heat and power. Renewable Energy, 2018,

130(JAN.):371-387. https://doi.org/10.1016/j.renene.2018.06.068

[13] Giri S, Mondal A K, Bera P. Design of PIDD controller for Hybrid Distributed Generation

System using Social Spider Optimization Algorithm. Indian Science Cruiser, 2019, 33(3):27.

https://doi.org/10.24906/isc/2019/v33/i3/185420

[14] Altsybeyev V, Kozynchenko V. Development of the distributed information system for the

cooperative work under the design and optimizationof charged particle accelerators.

Cybernetics and Physics, 2019(Volume 8, 2019, Number 4):195-198.

[15] Mughees M, Awan F G, Mughees A. Volt/VAr Optimization of Distribution System with

Integrated Distributed Generation. Mehran University Research Journal of Engineering and

Technology, 2017, 36(1):117-128. https://doi.org/10.22581/muet1982.1701.11

[16] Tabasi M, Asgharian P. Optimal operation of energy storage units in distributed system using

social spider optimization algorithm. International Journal on Electrical Engineering and

Informatics, 2019, 11(3):564-579. https://doi.org/10.15676/ijeei.2019.11.3.8

[17] Baran S, Nima S, Reza A, et al. Optimization of synchronized frequency and voltage control

for a distributed generation system using the Black Widow Optimization algorithm. Clean

Energy, 2020(1):1.

[18] Nawaz M A, Raheem A, Shakoor R, et al. feasibility and optimization of standalone pv-biogas

hybrid distributed renewable system for rural electrification: a case study of a cholistan

community. Mehran University Research Journal of Engineering and Technology, 2019,

38(2):453-462. https://doi.org/10.22581/muet1982.1902.19

