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Abstract: Classification algorithms are an important branch of data mining, and are also of 

great importance in the era of BD. The random forest algorithm (RFA) is one of the 

classification algorithms and is widely used in various industries for its good classification 

performance. However, the performance of RFA is not so good when dealing with 

high-dimensional data and unbalanced data. The main objective of this paper is to improve 

the RFA based on Spark. In this paper, we read a large amount of relevant algorithm 

literature in terms of algorithm research, and gain a comprehensive understanding of what 

feature selection and unbalanced classification are, as well as what characteristics they 

have and how these problems should be solved. It then focuses on how some domestic and 

international scholars have solved these problems. This paper focuses on studying and 

analysing the strengths and weaknesses of the RFA, and makes relevant improvements to 

address the two weaknesses of the RFA. In order to solve the problems of the RFA in the 

field of feature selection and the field of unbalanced classification, the optimization is 

improved respectively, and the parallelized design of the optimized algorithm is finally 

implemented on Spark. 

1. Introduction 

With the rapid development of Internet technology and the increasing maturity of various 

applications and sensor technologies, huge amounts of data information can be accessed or 

accumulated by organisations in various fields. BD is valued by all industries. However, due to the 

nature of big data (BD), it is not possible to extract valuable insights directly from it, which is why 

extracting valuable insights from BD has become a popular research topic. Data mining techniques 

can be very good at extracting valuable information from data. There are many BD platforms 

available, and Spark is widely used for its advantage of fast iteration [1-2]. 

In a related study, Sridevi et al. proposed a novel IDS framework that can overcome these 

problems with the Boruta Feature Selection with Grid Search Random Forest (BFS-GSRF) 
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algorithm [3]. The performance of BFS-GSRF was compared with ML algorithms such as Linear 

Discriminant Analysis (LDA) and Classification and Regression Trees (CART). The proposed work 

was implemented and tested on the Network Security Laboratory - Discovery Knowledge Dataset 

(NSL-KDD). ERs show that the proposed model BFS-GSRF yields higher accuracy (i.e. 99%) in 

detecting attacks and it outperforms LDA, CART and other existing algorithms.An integrated 

random forest and gradient boosting machine learning algorithm (RFGBM) is presented by 

Amandeep et al. that takes into account object-oriented parameters such as cohesion, coupling, 

cyclic complexity errors, number of subgenerations and depth of the inheritance tree, and tested the 

reusability of the given software code [4]. In addition, the proposed algorithm was compared with 

other algorithms. Using RFGBM, performance metrics such as accuracy, error rate, relative 

absolute error and mean absolute error were improved. The algorithm also utilises the help of 

unsupervised filters to pre-process the data in order to eliminate missing values, thereby improving 

efficiency. The proposed algorithm outperforms the existing algorithms in terms of performance 

parameters. 

This paper develops a study on the improvement of the RFA based on Spark. In the area of 

feature selection. The MMIC is used to score the features, and then the features are ranked 

according to their scores from highest to lowest and all features with high scores and some features 

with moderate scores (selected randomly) are selected to participate in the construction of the RFA. 

The final ERs demonstrate that the PM solves the problems encountered by the traditional RFA 

when dealing with high-dimensional data, and improves the accuracy and stability of the algorithm. 

2. Design Research 

2.1. Spark Distributed Platform 

1) Spark Ecosystem 

Spark provides a whole ecosystem, which includes. 

(1) Spark Streaming. 

(2) Spark ML lib and Spark ML. 

(3) Spark SQL. 

(4) Spark Graph X. 

These four components make up the entire Spark ecosystem, and Berkeley Lab AMP refers to 

this complete set of components collectively as the Berkeley Data Analytics Stack, or BDAS for 

short; this set of components can be used in Spark without many restrictions [5-6]. 

2) Spark RDD 

Resilient Distributed Dataset (RDD), a RDD [7-8]. Specifically, it is a distributed, fault-tolerant, 

scalable and partitioned data structure [9-10]. In addition, Spark provides a full set of supporting 

arithmetic for RDDs, allowing users to perform very rich logical computations [11-12]. 

RDDs have the following characteristics. 

(1) It can be sliced and diced. i.e. there is a list of slices, similar to MapReduce, which also 

requires distributed data to perform the relevant computations [13-14]. 

(2) Fault-tolerant. An RDD is very fault-tolerant and will recompute tasks for that node based on 

its own data source. 

(3) memory-based (elastic). The default location for RDDs is memory, but Spark will also store 

them on disk if memory resources are insufficient. 

(4) Rich data sources. RDDs can be created in a variety of ways, i.e. from files in HDFS or tables 

in Hive, or from user-defined collections. 

(5) Dependencies. The main dependencies are narrow and wide dependencies. 

(6) Cacheability: RDDs cache data that needs to be reused, which greatly improves 
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computational performance. 

(7) Directed acyclic graphs (DAGs). A specific set of DAG operations is generated after certain 

arithmetic operations are performed on an RDD, which also gives the notion of a loop that 

essentially stores the arithmetic operations between RDDs. When an error occurs somewhere, it 

recovers the RDD according to Lineage [13-14]. 

3) Spark runtime framework 

There are three node roles: the driver node, the cluster manager, and the executor node. 

The driver node is responsible for central coordination and scheduling of individual worker 

nodes. The executor node, which is the node that actually performs the tasks, also has two 

responsibilities, one is to run the tasks assigned to it by the driver node and return the execution 

results, and the other is to maintain the distributed in-memory storage. The cluster manager, on the 

other hand, is a role that is separate from the drive in order to manage a large-scale cluster, and it 

performs the initiation, management, backup and monitoring of the two node roles above [15-16]. 

2.2. Random Forest 

DTs have features such as simple models that are easy to implement, but are prone to overfitting 

and the inability to guarantee the achievement of global optimality when performing classification, 

as shown in Figure 1, to avoid phenomena such as overfitting [17-18]. 
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Figure 1. The core idea of the RFA 

The first step is to generate multiple independent DTs, and the second step is to vote on the 

classification results and generate the final results. 

Step1: Sample the training data with put-back sampling to obtain N subsets of samples. 

Step2: After obtaining the sample subsets, the feature subset selection is performed. 

Step3: Train a single DT on the basis of the sample subset and feature subset of the data. 

Step 4: The trained DTs are combined to classify the data by voting. 

The algorithm flow is shown in Figure 2. 
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Figure 2. Flow chart of the RFA 

The RFA mainly solves the problem of overfitting and local optimality when classifying a single 

DT [19-20]. The disadvantages are as follows. 

Firstly, high-dimensional data containing redundant features can affect the classification 

accuracy of the RFA. 

Second, it is not possible to distinguish the classification accuracy of single DTs, so the 

classification accuracy of the random forest model is somewhat affected by DTs with weak 

classification accuracy. 

3. Experimental Study 

3.1. The Process of Building the Spark Distributed Platform 

1) Change the hostname of each host by modifying /etc/hostname and also modifying the 

/etc/hosts file so that each machine can communicate by hostname. You can test this by pinging the 

hostname. 

2) Since Spark clusters communicate via ssh, configure ssh login. 

3) Spark is based on Scala, which is a JVM language. Next, install the JDK, and in subsequent 

steps you will use some of the JDK's tools that the JRE does not have. There are two ways to install 

the JDK, either by downloading the binary executable and configuring it manually, or by using 

Oracle's installation package. In practice, manual configuration does not have a high success rate, so 

use the installation package and configure the executable location in /etc/profile. Regarding the 

choice of JAVA version, it is recommended to choose JAVA 7. 

4) To install the Scala language environment, it is recommended to use version 2.10.5. Higher 
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versions have not been tested in Spark support and may have problems. Download the executable 

from the official web site, unzip it to a suitable location and configure the location of the executable 

in /etc/profile. 

5) The platform uses Hadoop Distributed File System (Hadoop) for the file curing layer, so you 

need to install Hadoop. Hadoop is successfully installed. 

(6) Spark needs to be compiled locally after downloading the source code, you can use Maven or 

Sbt build tool, Maven is an automatic build tool for Java, while Sbt is a special automatic build tool 

for Scala, there are still some problems. If you have problems with dependencies in the middle of a 

build, run the dependency check command mvn-U dependency:tree a few times. 

After installing and successfully starting the service you can easily view the cluster in action 

using your browser. 

At this point, the Spark distributed platform environment is complete, and it is important to 

configure several Spark configuration files. In Spark-env.sh, you need to configure the cluster's 

environment information and important variables such as node memory, as shown in Table 1. 

Table 1. Spark configuration information 

Spark-env.sh 

export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_79 

export SCALA_HOME=/usr/lib/scala/scala-2.10.5 

export HADOOP_HOME=/home/hadoop/hadoop-2.6.3 

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/Hadoop 

export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native 

SPARK_MASTER_IP=192.168.8.101 

SPARK_WORKER_MEMORY=7g 

SPARK_EXECUTOR_INSTANCES=1 

SPARK_EXECUTOR_MEMORY=5g 

In addition, you need to change the memory size of the Driver, otherwise you will get an error 

later in the program due to lack of space. The default size is 1GB. Modify "Spark.driver.memory" 

in Spark-defaults.sh, the memory size of Driver in this experimental environment is 2GB. 

Finally, pay special attention to the firewall settings on the host, set the ports and protocols 

allowed to pass through Spark and HDFS in iptable. When using integrated development 

environments such as Intelli JIDEA to debug programs, you need to turn off the system's firewall 

and other firewall software, otherwise this software will prevent the Spark protocol from 

communicating properly. 

3.2. The Random Forest CP 

The random FCCP (forest classifier construction process) is divided into two main phases, the 

algorithm specific construction phase and the prediction phase. 

In the construction phase, for the training set D={(Xi,Yj), the general CP of the random FC is as 

follows. 

1) Sampling the training set D for k times 

The training set D is randomly sampled k times with put-back and the corresponding k training 

subsets are generated. 

                                   (1) 

In addition, each sample has some uncollected data, called out-of-box (OOB) data. If k samples 

are taken, k sets of OOB data can be obtained. 
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                          (2) 

These OOB data are typically used to validate the accuracy of the model. 

2) Constructing each DT 

A DT is constructed for each subset to be trained, with each classification tree following the ID3, 

C4.5 or CART model. In addition, each classification tree is trained by randomly selecting m 

features from M features into the nodes of the classification tree, where m<<M. 

3) Generating a random FC. 

The final random FC is made up of K DTs. A particular choice is made as follows. 





k

i

i xhXH
1

)()(                                    (3) 

Where X is the input space, hi(x) is the DT, and x is the corresponding sub-input space for each 

decision tree (DT). 

In the prediction stage, the prediction result of the RFA is voted on by all the classification trees. 

The relevant codes are listed in Table 2 below. 

Table 2. Pseudo-code of the RFA 

The pseudo-code for the RFA is as follows. 

Input: training data set D, number of sample subsets n, number of DTs a. 

Output: random forest f(x). 

1. for t = 1, 2, 3 .... , T. 

(i) Select m random data points from the original dataset to obtain a training set Dt. 

(ii) Using the training set Dt, train a DT (can be ID3, C4.5 or CART classification tree), in the training 

process of each DT, the division rule for each node is to select k features randomly from all the features 

first, and then select the best division point from these k features to do the division of the DT subtree. 

2. A DT is pooled into a forest, and the final classification result is voted on by these a DTs. 

3.3. Parallelising the Design of Optimisation Algorithms 

The traditional RFA hardly performs well in the face of large data. Therefore, in order to 

optimize the RFA to be able to handle large amounts of data, this chapter will carry out the 

parallelization design of the improved algorithm on the platform on Spark in terms of both data and 

tasks. 

1) Data parallelisation 

In Spark, there are two basic data structures, RDD and Data Frame, where RDD is a data 

structure with an execution unit and Data Frame is a data structure with an execution unit. 

Data Frame provides detailed information about the structure of the data, how many features are 

in the dataset, and what type of features are in each dataset. It is also more efficient and faster to use 

Data Frame than RDD in Spark. So in Spark, Data Frame is used instead of traditional RDD. 

2) Task Parallelisation 

The parallelisation of the optimisation algorithm is designed in two main phases, the first of 

which is the calculation of the MICV (value) of each feature and the ranking of the features; the 

second phase is the construction of the RFA. 

For the first stage, the main objective is to calculate the MICV of the features, which is mainly 

dependent on the maximum mutual information coefficient (MMIC). Therefore, the main design 

idea of the first stage is HDFS+Spark-based MMIC method. 

For the second stage, the main objective is the construction of the RFA. So the main design idea 

of the second stage is HDFS + Spark-based implementation of the RFA. 
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For the overall parallelisation of the optimisation algorithm the design ideas are as follows. 

First, the training set is read from the database and stored in HDFS, forming several blocks of 

data. The MICVs for each attribute are calculated separately. 

The attribute intervals were then divided into high, medium and low categories based on the 

MICVs of the attributes being between high and low. 

A training subset was made available for each compartment by sampling in separate pockets. 

Each training subset was constructed as a tree according to the MT presented in this chapter. 

Finally, the trees are pooled to generate the forest. 

3) The specific steps of the optimised RFA are as follows. 

Step1: Randomly have put-back to draw K sample subsets. 

Step2: Calculate the importance of each feature according to the Relief-F algorithm. 

Step3: Perform feature subspace selection according to the feature subspace generation strategy 

proposed in this paper. 

Step4: DT training is carried out, and the node splitting attribute in the DT training process is 

selected by the Gini coefficient. The Gini coefficient is calculated as shown in equation (4). 
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Step5: Repeat Step2-4 until all DTs are trained to obtain the random forest model 

Step6: Vote to get the final output. 

4. Experiment Analysis 

4.1. Algorithm Improvement Experiments 

After the classifier has completed the relevant task, the evaluation of the classification effect is 

an important part of the experiment. The confusion matrix is a very important way in the evaluation 

of classification effects. Taking the binary classification as an example, the confusion matrix is 

shown in Table 3. 

Table 3. Confusion matrix 

True/Predicted 0 1 
0 TP FP 
1 FN TN 

For the evaluation of classifiers evaluation indicators are mainly composed of the following, 

which are calculated as follows. 

(1) Correctness rate. The correctness rate is a common metric when performing classifier 

evaluation, and is calculated as shown in equation (6). 

TNFNFPTP

TNTP
accuracy




                               (6) 

(2) Error rate. The error rate represents the proportion of classification results that are 

misclassified and is calculated as shown in equation (7). 

TNFNFPTP

FNFP
error




                                (6) 

(3) Recall rate. The recall rate represents the proportion of samples in category 0 that are 
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correctly classified, and is calculated as shown in equation (8). 

FNTP

TP
recall


                                    (6) 

Classification accuracy was chosen as the evaluation metric for the improved algorithm. 

In this paper, we use the datasets in UCI for comparison and validation, and the feature 

dimensions of each dataset are shown in Table 4. 

Table 4. Dimensionality of features in the dataset 

Data set number Name of dataset Dimension of dataset features 

Dataset 1 Wine 13 

Dataset 2 Breast 32 

Dataset 3 Sonar 60 

Dataset 4 Musk 168 

4.2. Validation and Analysis 

A comparison of the classification accuracy before and after the improvement of the RFA is in 

Table 5. 

Table 5. Comparison of accuracy rates before and after improvement 

Accuracy Pre-improvement algorithm Post-improvement algorithm 

Dataset 1 0.87 0.89 

Dataset 2 0.85 0.87 

Dataset 3 0.81 0.83 

Dataset 4 0.75 0.79 

 

 

Figure 3. Comparison analysis of accuracy rate before and after improvement 

As shown in Figure 3, the experimental results (ER) show that the optimized RFA proposed in 

this paper has a more obvious improvement in the classification accuracy compared with the RFA 

before optimization. At the same time, with the increase of the dimension of the data set features, 
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the improvement of the classification accuracy of the algorithm proposed in this paper is more 

obvious. Therefore, the optimized RFA in this paper has better results on datasets with higher 

feature dimensions. 

The algorithm is then validated in a Spark cluster environment. The data set is an artificial test 

data set and the validation criterion is the speedup ratio, which is used to describe the reduction of 

the algorithm's running time. The variation of the algorithm's speedup ratio is shown in Table 6. 

Table 6. Algorithm parallel acceleration ratios 

Calculate the number of nodes/Acceleration ratio Dataset 5 Dataset 6 

1 1 1 

2 1.6 1.8 

3 1.9 2.2 

4 2.6 3 

 

 

Figure 4. Algorithm parallel acceleration ratio curve 

As can be seen in Figure 4, the algorithm speed-up ratio increases as the number of working 

nodes in the Spark cluster increases. It shows that the algorithm has good parallelisation. As the 

amount of data in different datasets, dataset 6 > dataset 5, the algorithm has a better speed-up ratio 

when the amount of data increases. Therefore, parallelisation of the optimisation algorithm based on 

Spark can be effective for BD analysis processing. 

5. Conclusion 

In this paper, two optimization methods are proposed for feature selection and unbalanced 

classification: in the feature selection area, the MMIC is used to score the features, then the features 

are ranked according to their scores from highest to lowest and all features with high scores and 

some features with medium scores (randomly selected) are selected to participate in the 

construction of the RFA. The final ERs demonstrate that the proposed method (PM) is a good 

solution to the problems encountered by traditional RFAs when dealing with high-dimensional data. 

In the field of unbalanced classification, the parallelization design of the optimization algorithm 

based on Spark is completed and the final ERs prove that the PM can solve the problems 
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encountered by the traditional RFA in the field of unbalanced classification well and achieve better 

results. Finally, according to the specific situation, the above two improved methods are used in the 

field of intrusion detection, which can solve some problems in the field of intrusion detection well 

and achieve good detection accuracy and detection speed. 
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