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Abstract: In recent years, machine learning algorithms have flourished, and with superior 

performance, a new generation of information technology represented by machine learning 

algorithms has been widely used in the field of fault diagnosis. Researchers have proposed 

a large number of dynamics modelling and control algorithms based on machine learning, 

and these algorithms have achieved good results in the study of mechanical vibration signal 

response. Therefore, this paper takes the mechanical dynamics of engineering ships as the 

research object and adopts a machine learning-based approach to carry out research on 

mechanical fault diagnosis models. The paper focuses on the mechanical vibration signal 

fault model to capture the uncertainty of the mechanical dynamics system and the use of a 

model predictive control algorithm based on the machine learning model to determine the 

mechanical faults. 

1. Introduction 

With the deep integration of information technology and marine engineering, it is necessary to 

use advanced intelligent technology to diagnose mechanical power failures in a timely manner [1-2]. 

In the field of fault diagnosis, since different signals have different sensitivities to specific types of 

faults, multi-sensor acquisition systems can be built to detect faults in components or mechanical 

systems in a comprehensive manner [3]. Gaussian processes have a strong ability to process data 

dynamically and can be used to solve prediction problems over a certain time series [4-5]. The rapid 

development of signal processing algorithms and machine learning algorithms has also provided 

solid technical support for accurate identification of mechanical faults [6]. The basic idea is to use 

various algorithms to perform a series of processes on the data acquired by the sensors and thus 

assess the operational status of the equipment and determine the type of fault occurring [7]. 

In recent years, with the development of machine learning information technology, a large 

number of scholars have carried out in-depth research on machine learning and engineering ship 
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power machinery fault diagnosis. For example, Kinoshita F and other researchers have studied the 

extraction of characteristic parameters of low-frequency vibration signals in conjunction with 

vibration monitoring principles, detailed the sample processing and data normalisation process of 

vibration signals, and validated the model using the comparison of parameter samples and 

calculation groups, and this research has provided theoretical support for GIL machinery fault 

diagnosis [8]. experts such as Keita have used computer signal processing techniques to monitor 

and record the vibration signals of mechanical dynamics online, collecting test data using an 

intelligent data processing system and processing the data [9]. The study of machine learning has 

revealed that machine learning-based machinery fault diagnosis models are a direction worthy of 

further research. 

The vibration signals are often characterised differently for different faults occurring in the 

equipment, and therefore vibration signals are widely used in the fault diagnosis of power 

mechanical equipment. This paper discusses the power machinery fault diagnosis model for ships 

based on machine learning. The structure of this paper can be roughly divided into three parts: the 

first part is the basic overview part, which includes the modelling of vibration signal fault diagnosis 

and power system uncertainty; the second part is the construction of the mechanical power fault 

diagnosis model, which is constructed by vibration signal feature extraction and parameter model; 

the third part is the model analysis part, which mainly includes fault diagnosis experimental 

analysis and alternative The third part is the model analysis, which mainly includes the 

experimental analysis of fault diagnosis and the analysis of the influence of the number of 

alternative action sequences. 

2. Basic Overview 

2.1. Vibration Signals 

For fault diagnosis of vibration signals, statistical features are usually needed to reflect the 

changes in the signal and characterise the fault information of the vibration signal [10]. Generally 

speaking, statistical features contain statistical features in the time domain and statistical features in 

the frequency domain, and each statistical feature has some physical significance [11]. The 

modelling process for distinguishing the feature selection fault diagnosis model for smooth 

non-smooth signals is shown in Figure 1. 

The specific modelling process is as follows. 

Step 1: Signal pre-processing:The vibration signal is pre-processed using a pre-processing 

method combining empirical modal decomposition and wavelet decomposition, while the obtained 

sub-signal set is signal filtered using screening conditions. 

Step 2: Smoothness differentiation: The ADF test is used to discriminate the smoothness of the 

sub-signal set, and the sub-signal set is divided into two parts: smooth and non-smooth. 

Step 3: Feature extraction:Multiple time-frequency statistical features are computed for the 

smooth and non-smooth sub-signals separately. 

Step 4: Refinement of feature selection:The features extracted from the smooth part and the 

features extracted from the non-smooth part are selected using a recursive feature elimination 

algorithm to select the smooth key features and non-smooth key features that contain fault 

information. 

Step 5: Establish the fault diagnosis model:Use the selected smooth part key features and 

non-smooth part key features in step 4 to model together to obtain the fault diagnosis model. 
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Vibration signals 

Pre-processing of the signal combining empirical modal decomposition and wavelet 

decomposition to obtain a number of sub-signals

ADF test is used to discriminate the smoothness of the sub-signals

Feature extraction of smooth partial subsignals Feature extraction for non-smooth subsignals

Key feature selection using RFE Key feature selection using RFE

Modeling with selected key features

Fault diagnosis model

 

Figure 1. Modeling flow chart 

2.2. Uncertainty of the Dynamical System 

The uncertainty of the dynamical system is characterised by two ways, namely stochastic 

uncertainty and cognitive uncertainty [12]. Stochastic uncertainty is mainly caused by causes such 

as observation noise and process noise, and is an inherent characteristic of the system [13]. 

Stochastic uncertainty can be represented by the parameters of the parameterised distribution of the 

output. Cognitive uncertainty arises from uncertainty in the subjective perception of the dynamical 

system. The main reason for the existence of cognitive uncertainty is the limitation of the data 

describing the dynamical system, which is a given on data sets of definite size, and only with 

infinite data does cognitive uncertainty disappear [14-15]. Bayesian inference methods are often 

used to reduce the impact of cognitive uncertainty [16]. 

3. Model Construction 

3.1. Vibration Signal Feature Extraction 

In order to quantitatively establish the optimal number of segments, the M- SE eigenvalues of 

each sub-node were calculated by different segmentation modes and the SD of the corresponding 

M-SE eigenvalues between the sub-nodes were obtained for quantitative analysis, and the results 

are shown in Table 1. 
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Table 1. M-SE values of each node under different segmentation patterns 

M (2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) SD 

4 2.81 2.21 2.34 2.48 2.56 2.42 2.79 0.316 

5 2.84 2.43 2.47 2.53 2.61 2.56 2.63 0.258 

6 2.87 2.54 2.64 2.59 2.68 2.69 2.78 0.227 

7 3.14 2.58 2.67 2.64 2.74 2.73 2.87 0.324 

8 3.26 2.79 2.83 2.72 2.93 2.86 3.02 0.276 

 

It can be seen from Table 1 that the M-SE feature values of individual nodes are larger when the 

number of segments is higher. This means that as the number of segments increases, the uncertainty 

of the feature information obtained by each node becomes larger, but it does not mean that the 

smaller the uncertainty of the feature information obtained by the nodes is better, because with too 

few segments, small offsets and mutations within the segment interval appear insignificant 

compared to the whole segment interval, and valid feature information is not easily detected. At the 

same time, the SD value of the MSE eigenvalues between the nodes is found to be the largest when 

M=7, and the optimal number of segments is determined to be seven. Therefore, the M-SE 

eigenvalues extracted by the seven-segment method are finally chosen as the input features for 

subsequent fault identification, and the convergence of the amount of feature information extracted 

from different sub-signals can be effectively avoided. 

3.2. Parametric Model 

The principle of the parametric model is that the predicted values are calculated directly from the 

actual physical and mathematical relationships, with the form of the function predetermined in 

advance [17]. The advantage of parametric models is that they have actual physical meaning and 

derivation process, can effectively grasp the characteristics of the whole system, and in most cases, 

the form of the parametric model has been fixed, with high accuracy and ease of use [18]. The 

general mathematical form of the parametric model is as follows. 

 APM                 (1) 

Where M is the value to be calculated, A is the pre-designed model matrix, P is the observation 

point and Y is the observation error. The kinetic model is derived from the energy equations of the 

system. The parameter matrices in the equations have a strict physical meaning and when the model 

parameters are accurate, the deviations from the parametric model are minimal, whereas when the 

model presets are not the same as the actual situation, the results are often incorrect. However, in 

practice, it is difficult to match the predetermined model parameters exactly with the actual model 

parameters. 

    uuuGuRS ,1   
        

  (2) 

4. Model Analysis 

4.1. Experimental Analysis of Fault Diagnosis 

The validity of the machine learning based stochastic intuitive fuzzy set was first verified using 

individual sensor data. Firstly, at the 1st point, 50 consecutive observations were made for a total of 

6 sets. Afterwards, the frequencies of the 1st, 2nd and 3rd amplitude points were used as the fault 
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characteristic frequencies for 1X, 2X and 3X respectively, and the high frequency component after 

3X was ignored, i.e. p=3, to obtain a total of 300 data sets. Finally, the 300 data sets were inverse 

analysed using the established fuzzy database. Table 2 shows the validation results of the inverse 

analysis diagnosis method. 

Table 2. Validation of the inverse analysis diagnosis method 

Type of fault Accuracy Number of errors 
Number of 

uncertainties 
Accuracy rate 

Fault type 1 297 1 2 99.0% 

Fault type 2 299 0 1 99.7% 

Fault type 3 298 0 2 99.3% 

 

As can be seen in Table 2, for different fault types, the accuracy of the inverse analysis 

diagnostic method reaches 99.0% and above, which indicates that the use of fuzzy set theory in the 

field of mechanical fault diagnosis is feasible and can achieve good results. Most of the current fault 

diagnosis work is carried out in the same operating environment, i.e. the same experimental 

platform and the same background temperature, n data sets are measured and then divided into two 

groups, one containing n-m data sets and the other containing the remaining m data sets. Due to the 

same operating environment, there is a high degree of consistency and similarity between the n-m 

data sets and the m data sets, which are considered to be inherently consistent. This is the 

fundamental reason for the high diagnostic accuracy and poor generalisation of traditional methods, 

and is the focus of controversy in the field. The inverse analysis diagnostic method validates the 

robustness and generalisation capability of the mechanical fault diagnosis model. 

4.2. Analysis of the Influence of the Number of Alternative Action Sequences 

The number of alternative action sequences in the machine learning-based MPC method is an 

important influencing factor on the control of mechanical vibration response for a certain number of 

prediction steps T The control effect is mainly evaluated in terms of control time and cumulative 

error, where the error is a two-parameter cumulative error, and the faster the desired position is 

reached in the control process, the smaller the two-parameter cumulative error is. The more the 

angle of the three joints in the control process is close to the desired position, the closer the 

two-parameter error between the actual position and the desired position is to 0. The natural 

logarithm can amplify this proximity, thus evaluating the stability of the final convergence. 
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Figure 2. Two-parameter cumulative error and single-step control time results 

 

Figure 3. Negative logarithmic two-parameter cumulative error and single-step control time results 

The simulation results can be seen in Figures 2 and 3, where the solid line represents the mean 

value of 20 iterations of the simulation. From Figure 2, it can be found that the control time of a 

single step increases linearly with the number of alternative action sequences, while the cumulative 

two-parameter error decreases more significantly when the number of alternative action sequences 

increases from 10 to 60, and the decrease after the number of alternative action sequences is greater 

than 60 is small and almost negligible, indicating that an appropriate increase in the number of 

alternative action sequences can improve the comprehensive control effect, but after a certain level 

of increase, the time However, after a certain degree of increase, the time cost increases linearly and 

the comprehensive control effect does not improve significantly. As can be seen from Figure 3, the 

negative logarithmic two-parameter cumulative error rises significantly when the number of 

alternative action sequences is from 10 to 50, and rises slowly after the number of alternative action 
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sequences is higher than 50, indicating that increasing the number of alternative action sequences 

within a certain range can significantly improve the stability, but beyond the range the stability 

increases slowly and the single-step control time still increases linearly. Therefore, it is important to 

weigh the control effect and single-step control time when selecting alternative action sequences. 

5. Conclusion 

In the vibration response of engineering ship power machinery, the vibration signal is not only 

easy to collect, but also when the equipment fails, there will be immediate response on the vibration 

signal collected by the equipment, and the characterization of the vibration signal will often be 

different for different failures of the equipment, so the vibration signal is widely used in the fault 

diagnosis of mechanical power systems. This paper conducts fault diagnosis experiments based on 

machine learning for vibration feature representation and mechanical fault diagnosis methods. It is 

found that the inverse analysis diagnosis method has robustness and generalisation capability for 

mechanical fault diagnosis models. The MPC algorithm based on machine learning yields good 

control results, and the number of alternative action columns can be increased within a certain range 

to improve the control effect. The modelling and control methods used in this paper can also be 

applied to other space robot modelling and control tasks to verify the data efficiency and robustness 

of the algorithm. 
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