
Scholar Publishing Group

International Journal of Multimedia Computing

https://doi.org/10.38007/IJMC.2025.060102

ISSN 2789-7168 Vol. 6, Issue 1: 19-28

Copyright: © 2025 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

19

Improved A* Algorithm Based on Bidirectional Jump

Point Search

Qingyuan Xiao
1,a

 , Meng Qin
1,b

, Huiheng Suo
1,c

, Guangjun Lai
1,d

, Zuteng Chen
1,e

, Jian Wu
1,f,*

,

Yuanhao Pan
2,g

, Xie Ma
2,h

, Yingping Bai
3,i

, Weihong Zhong
3,j

1
Nanchang Hangkong University, Nanchang, China

2
Ningbo University of Finance & Economics, Ningbo, China

3
NingboTech University, Ningbo, China

a
xiaoqy0918@163.com,

b
alphenqin@163.com,

c
suohuiheng@163.com,

d
l2647080898@163.com,

e
2293747855@qq.com,

f
flywujian@qq.com,

g
1090824061@qq.com,

h
maxie88@163.com,

i
3459951916@qq.com,

j
zwh@nbt.edu.cn

*
corresponding author

Keywords: A* algorithm; Path planning; Jump point search; Bidirectional search

Abstract: To address the issues of low path planning efficiency and poor path smoothness

of the traditional A* algorithm in complex environments, an improved A* algorithm

combining bidirectional jump point search with a direction penalty factor is proposed. This

approach enhances search efficiency by changing the traditional A* algorithm's

unidirectional search strategy to a bidirectional search, reduces redundant node expansions

through jump point search mechanisms, and optimizes path smoothness by introducing a

direction penalty factor. Experimental results show that the improved algorithm reduces the

number of node expansions by approximately 90%, shortens the search time by 50%, and

decreases the path length by 13%, while ensuring that the path length remains close to

optimal.

1. Introduction

Path planning refers to the best path formed from the pre-set start point to the specified target

point by relying on specific policy methods and meeting certain performance indicators
[1]

. There are

some common path planning algorithms such as Dijkstra algorithm
[1]

, best priority search, A*

algorithm
[2]

, D* algorithm, and intelligent algorithms like genetic algorithm
[3]

, particle swarm

algorithm
[4]

, etc. Among so many path planning algorithms, A* algorithm is the most widely used

for approaching a near optimal solution, fast solution speed and high efficiency, which still needs to

be improved. In recent years, researchers have improved algorithm performance by optimizing

heuristic functions
[5]

, employing dynamic weighting strategies
[6]

, and incorporating jump point

search
[7]

. However, these enhancements often sacrifice path optimality or struggle to balance

real-time response requirements in dynamic environments
[8]

. To address the limitations of the

mailto:dflywujian@qq.com

International Journal of Multimedia Computing

20

traditional A* algorithm, literature
[9]

 proposes a new and enhanced A* algorithm incorporating the

Floyd trajectory optimization algorithm, but this approach proved time-consuming. Literature
[10]

proposed a method to optimize path length by detecting whether the line connecting adjacent nodes

crosses obstacles.

To address the high computational cost and the lack of path smoothness in the A* algorithm, this

paper proposes an enhanced version of the A* algorithm that incorporates a bidirectional jump point

search mechanism to boost search speed and optimize the search process by minimizing

unnecessary node expansions. Additionally, the algorithm employs a direction penalty factor to

improve path smoothness, thereby significantly enhancing path planning performance in complex

environments. This strategy not only increases search efficiency but also ensures the smoothness

and safety of the path, making it particularly suitable for applications sensitive to turning

constraints.

2. Traditional A* algorithm

A* algorithm is widely used in robot path planning because of its high efficiency. The nodes to

be detected in the path planning process are stored in the OpenList, and the detected nodes are

stored in the CloseList. From the starting point, the cost of the surrounding grid is calculated by

Formula 1. The point with small cost is selected as the next child node, and the list is updated. The

updated child node is used as the parent node to recalculate the cost of the surrounding grid until the

path is searched to the target point.

 (1)

Where, g(n) represents the actual cost from the start node to the current node, while h(n) is the

heuristic function estimating the predicted cost from the current node to the goal. For the evaluation

function f(n), when g(n)=0, the original expression becomes the heuristic function h(n), which

estimates the cost from node n to the goal. In this case, the A* algorithm degenerates into a greedy

Best-First Search (BFS), which is computationally fast but does not guarantee an optimal solution.

When h(n)=0, the original expression reduces to the function g(n), which estimates the cost from

the start node to node n. Here, the A* algorithm transforms into Dijkstra's algorithm, requiring the

computation of a large number of nodes and resulting in low efficiency. During the search process,

the A* algorithm simultaneously computes g(n) and h(n), balancing search efficiency while

ensuring the discovery of the optimal path.

Traditionally, the A* algorithm uses either Euclidean distance or Manhattan distance as the

metric for the movement cost between two points. The distance function is expressed as:

 (2)

 (3)

Where, (Xi,Yi) and (Xj,Yj) represent the coordinates of points n1 and n2, respectively. This paper

employs the Manhattan distance to measure the movement cost between two points. Using the

Manhattan distance provides a way to estimate the cost based on a grid-like path where only vertical

and horizontal movements are allowed, making it particularly suitable for scenarios with such

constraints
[11]

.

3. Improved A* algorithm

3.1 Jump Point Search

The jump point search is to find the point that can jump between the starting point and the target

International Journal of Multimedia Computing

21

point, and find the path by searching between jump points. This is the search strategy of the jump

point search algorithm
[12]

. As shown in

a c

e h

s gd

f

b

Figure 1 Node expansion process in search, the g point can be directly searched from the s point,

without passing through the nodes b or f. The intermediate nodes on the path formed by the jump

points (like s and g) are not expanded, which also greatly reduces the amount of calculation and

storage during the expansion process and speeds up the search.

a c

e h

s gd

f

b

Figure 1 Node expansion process in search

3.2 Bidirectional Search

The traditional A* algorithm uses a unidirectional search from the start to the goal, which is

inefficient in large maps with numerous obstacles
[13]

. To address this limitation, integrated the

bidirectional search strategy with the traditional A* algorithm, resulting in the Bidirectional A*

(BA*) algorithm. Then, searches are initiated simultaneously from both the start and goal points,

with each treating the other as the target, until the paths meet in the middle. Then, the complete path

is generated by backtracking from the meeting point to the start and goal. Specific Steps Are as

Follows:

(1)Initialization

Add the start node to the OPEN1 list for forward search and the goal node to the OPEN2 list for

backward search. Initialize the corresponding CLOSE1 and CLOSE2 lists as empty, which will

store nodes that have already been explored in each direction.

(2)Iterative Search

Select the nodes with the lowest total cost, Node1 from OPEN1 and Node2 from OPEN2,

remove them from their respective OPEN lists, and add them to CLOSE1 and CLOSE2. For Node1,

examine its neighboring nodes: if a neighbor is already present in CLOSE1 or marked as an

obstacle, it is ignored. If the neighbor is not found in OPEN1, set Node1 as its parent node,

calculate its total cost F, and then add it to OPEN1. If the neighbor is already in OPEN1, compare

the new path's actual cost with the previously recorded one; if the new cost is lower, update the

neighbor’s total cost F, actual cost, and parent node information accordingly. Similarly, perform the

same operations for Node2’s neighbors, updating the CLOSE2 and OPEN2 lists.

International Journal of Multimedia Computing

22

(3)Termination Condition

The search terminates when a common node appears in both the CLOSE1 and CLOSE2 lists,

indicating that a path has been found. The complete path can be constructed by backtracking

through the parent pointers from the intersecting node to both the start and goal nodes. If either the

OPEN1 or OPEN2 list becomes empty, or no common node exists between the CLOSE1 and

CLOSE2 lists, it is determined that no valid path exists, and the search fails.

By employing a bidirectional search strategy, the algorithm significantly reduces the search

space on large-scale maps, thereby markedly improving the efficiency of path planning. This

approach not only accelerates the search process but also ensures optimal path discovery while

minimizing computational resource consumption.

3.3 Direction Penalty Factor

In the A* algorithm, the core of path planning is to select the optimal path through heuristic

function h(n) and cost function g(n). To improve the A* algorithm and introduce a directional

penalty factor, consider the impact of direction changes on the total cost. Specifically, when the path

changes direction, an additional penalty value is added to adjust the priority of path selection.

Let the direction vector from node A to node B be denoted as ,The direction vector from

node B to node C can be denoted as .By calculating the angle θ between these two vectors, the

direction penalty factor can be determined. A larger angle indicates a more significant change in

direction, and consequently, a higher penalty should be applied. The improved algorithm

incorporates the direction penalty factor into the cost function g(n) as follows:

 (4)

Where,

 (5)

First, calculate the angle θ between the two direction vectors:

 (6)

Where, the penalty function is defined based on the magnitude of the angle θ. A common linear

penalty function can be expressed as:

 (7)

In the penalty function, there is a penalty coefficient, denoted here as k, where is used to adjust

the sensitivity to changes in direction. This coefficient plays a crucial role in determining how

heavily directional changes are penalized during the pathfinding process.

3.4 Pathfinding Process of the Improved A* Algorithm

The improved A* algorithm integrates Jump Point Search (JPS), bidirectional search, and a

direction penalty factor to filter out unnecessary nodes during the pathfinding process. The

remaining nodes are those that satisfy specific screening criteria. The flowchart of the improved A*

algorithm is shown in Figure 2, with the detailed steps outlined below:

Step 1:Initialization:Initialize the forward search queue OPEN1 and the backward search queue

OPEN2, along with their corresponding CLOSE1 and CLOSE2 lists.Add the start node to OPEN1

and the goal node to OPEN2.Calculate the initial direction vectors for both directions.Set the

direction penalty coefficient k and the jump point expansion threshold.

Step 2: Bidirectional Jump Point Expansion:From OPEN1 and OPEN2, select the nodes Node1

International Journal of Multimedia Computing

23

and Node2 with the smallest total cost F. Prioritize processing the queue with the smaller

F-value.Apply the JPS strategy to expand along the parent node's direction:If the current node has a

forced neighbor (e.g.,an obstacle blocking the natural path), mark it as a jump point and add it to the

corresponding OPEN list.Otherwise, move directly to the next jump point along the straight-line

direction (e.g.,node g in

a c

e h

s gd

f

b

Figure 1).For each expanded jump point, calculate the penalty value Δp caused by the change in

path direction using equations (4)-(7).Update the actual cost g(n) as:

g(n)=g(parent)+step_cost+Δp (8)

Step 3:Bidirectional Search Coordination:Add the current jump point Node1 to CLOSE1 and

Node2 to CLOSE2.Check the neighboring nodes of Node1 and Node2:If a neighboring node has

not been visited and is not an obstacle, update its parent node and cost, then insert it into the

corresponding OPEN queue.If the neighboring node already exists in the OPEN queue, compare the

new path cost and update it only if the new cost is lower.Continuously compare the nodes in

CLOSE1 and CLOSE2 in real-time.If a common node is found, terminate the search and generate

the complete path.If either OPEN1 or OPEN2 becomes empty or no common node is detected,

conclude that no feasible path exists.

Step 4: Path Backtracking and Optimization:Starting from the intersection node identified by the

bidirectional search, backtrack along the parent pointers to reconstruct the full path from the start

node to the goal node.Remove redundant intermediate nodes (e.g.,nodes between JPS jump points

that are directly reachable).Adjust the path angles by incorporating the direction penalty factor to

minimize unnecessary turns and ensure smooth transitions.

International Journal of Multimedia Computing

24

Start

Initialize Parameters

1. Initialize OPEN1/CLOSE1 (forward)

2. Initialize OPEN2/CLOSE2 (reverse)

3. Start OPEN1, Goal OPEN2

4. Set k and jump threshold

Bidirectional JPS

Expansion

1. Select min-F nodes from OPEN1/OPEN2

2. JPS jump detect ion along parent direction

Forced

neighbors?

Mark as jump point OPEN Straight-line jump to next jump point

1.Calculate Δp update g(n)=g(parent)+cost+Δp

2. Update CLOSE

OPEN empty?

CLOSE

intersection?

Path Optimization

1. Bidirectional path stitching

2. Remove redundant nodes

3. Smooth turning angles

End No valid path

Pathfinding success, generate path

Y

N

Y

N

Y

N

Figure 2 Improved A* algorithm flow chart

4. Simulation Experiments

4.1 Experimental Design

To validate the effectiveness of the improved A* algorithm, this paper conducts simulation

experiments comparing the traditional A* algorithm with the enhanced A* algorithm that integrates

bidirectional search and Jump Point Search (JPS). The experiments are divided into two parts:

1. MATLAB Grid Map Simulation: This part involves simulating grid maps in MATLAB to

compare the traditional A* algorithm with the improved A* algorithm in terms of path length, the

number of expanded nodes, and search time.

2. ROS Robot Simulation: This part evaluates the performance of the algorithms in a realistic

International Journal of Multimedia Computing

25

map environment using the Robot Operating System (ROS). The assessment focuses on path

smoothness, obstacle avoidance success rate, and execution efficiency in real-world scenarios.

4.2 MATLAB Grid Map Simulation

The experimental platform was MATLAB R2022b, and experiments were conducted on four grid

maps of different sizes. The obstacle density of the grid maps used in the experiments was

uniformly set at 40%, with a direction penalty factor k=0.5. Figure 3 shows the simulation

experiment on a 40×40 grid map, where black cells represent obstacles, the black circle indicates

the starting node, and the yellow circle represents the goal node. Figure 4 and Figure 5 present the

comparative experimental results of the traditional A* algorithm and the improved A* algorithm

proposed in this paper. Green cells indicate nodes visited (i.e., added to the operation list) during the

search process by the pathfinding algorithms, while the red polyline represents the final generated

path. It can be observed that both pathfinding algorithms successfully generated paths in the same

environment, and the number of nodes operated on during the search process by the improved A*

algorithm was significantly fewer than that of the traditional A* algorithm. Simulation results for

other map environments are shown in Table 1.

Figure 3 Simulation Experiment Map

According to Table 1, on the basis of ensuring the same path quality, the improved A* algorithm

reduces the number of expanded nodes by an order of magnitude during the pathfinding process.

The traditional A* algorithm involves visiting and evaluating each neighboring node, followed by

sorting based on heuristic values. In contrast, the improved A* algorithm operates on a significantly

smaller number of jump points, thereby greatly reducing computational complexity and minimizing

memory consumption during the pathfinding process. The experimental results demonstrate that the

improved A* algorithm not only effectively enhances the search speed of the traditional A*

algorithm but also drastically decreases the number of expanded nodes during the search process.

The improved A* algorithm reduces the search time by approximately 48%, decreases the number

of node expansions by about 93%, and shortens the path length by roughly 13% compared to the

traditional A* algorithm.

International Journal of Multimedia Computing

26

Figure 4 Traditional A* algorithm Figure 5 Improved A* algorithm

Table 1 MATLAB raster map simulation experiment comparison

Map

size

Search time/s
Number of extension

nodes
Path length

Traditional

- A*

Improved

- A*

Traditional

- A*

Improved

- A*

Traditional

- A*

Improved

- A*

40*40 1.9022 1.1067 245 14 61 57

50*50 2.1644 1.3156 347 23 74 64

60*60 3.7641 1.8064 689 44 102 87

80*80 8.4217 3.4648 968 72 124 102

4.3 ROS Robot Simulation

The experiment was based on the Ubuntu 20.04 operating system, using ROS Noetic as the

development platform, and combined with Gazebo 11 for physical simulation and Rviz for path

visualization. The robot model was an Ackermann chassis four-wheeled robot, equipped with a

Hokuyo LiDAR, with a scanning frequency set to 10Hz for real-time environmental perception. The

scene design is shown in Figure 6 as a static indoor maze environment, and Figure 7 shows the map

constructed using the Gmapping SLAM
[14]

. The above configuration ensured the diversity of the

simulation experiments and a high degree of fidelity to actual application scenarios.

Figure 6 Gazebo simulation environment

International Journal of Multimedia Computing

27

Figure 7 Environmental maps built by Gmapping SLAM

The pathfinding results of the traditional A* algorithm and the improved A* algorithm are shown

in Figure 8 and Figure 9 , respectively. The maps display the 2D map and path planning results

visualized by Rviz, a visualization tool of ROS. In the figures, the light gray areas represent the 2D

form of the constructed map in the simulation environment. For both sets of experiments, identical

start and end points were set, with the green lines indicating the generated planned paths.

Figure 8 Traditional A* algorithm

Figure 9 Improved A* algorithm

Table 2 lists the path lengths and search times of the two algorithms for comparison. This paper

concludes that the improved A* algorithm can essentially generate optimal paths. Meanwhile, in

International Journal of Multimedia Computing

28

terms of search speed and path length, the improved A* algorithm significantly outperforms the

traditional A* algorithm. The experimental results demonstrate that the improved A* algorithm,

which incorporates bidirectional jump point search, effectively accomplishes path planning for

mobile robots. Compared to the traditional A* pathfinding algorithm, the improved A* algorithm

optimizes the search strategy, thereby achieving faster computational speed and higher pathfinding

efficiency.The improved A* algorithm reduces the search time by approximately 52% and shortens

the path length by about 13% compared to the traditional A* algorithm.

Table 2 Comparison of search results

Algorithms Trajectory length/cm Time spent/s

Traditional A* 30.68 2

Improved A* 26.74 1.27

5. Conclusions

The improved A* algorithm proposed in this paper transforms the traditional unidirectional

search strategy into a bidirectional search, and incorporates a jump point search mechanism to

reduce redundant node expansions. Additionally, it introduces a direction penalty factor to optimize

path smoothness. Experimental results show that this algorithm achieves significant optimization in

terms of the number of node expansions, search time, and path length, particularly demonstrating

higher search efficiency and better path quality in complex environments. These improvements

make the algorithm more suitable for real-time application scenarios requiring efficient path

planning. Compared with the traditional A* algorithm, the improved algorithm demonstrates its

practicality and superiority, providing a new solution for path planning in complex environments.

Acknowledgements

This paper is supported by Projects of major scientific and technological research of Ningbo City

(2021Z059, 2022Z090(2022Z050), 2023Z050(the second batch)), Projects of major scientific and

technological research of Beilun District, Ningbo City(2021BLG002, 2022G009), Projects of

scientific and technological research of colleges student's of China(202313022036, 202413001008).

Reference

[1] Tang Y, Zakaria MA, Younas M. Path planning trends for autonomous mobile robot

navigation[J]. Sensors, 2025, 25(4): 1206.

Zhou P, Xie Z, Zhou W, Tan Z. A heuristic integrated scheduling algorithm based on improved

Dijkstra algorithm[J]. Electronics, 2023, 12(23): 4189.

[2] Liu L, Wang B, Xu H. Research on path-planning algorithm integrating optimization A-star

algorithm and artificial potential field method[J]. Electronics, 2022, 11(22): 3660.

[3] Alfaro-Cid E, McGookin EW, Murray-Smith DJ. Optimisation of the weighting functions of an

H∞ controller using genetic algorithms and structured genetic algorithms[J]. International

Journal of Systems Science, 2008, 39(4): 335-347.

[4] Fakhouri HN, Hudaib A, Sleit A. Multivector particle swarm optimization algorithm[J]. Soft

Computing, 2020, 24(15): 11695-11713.

[5] Zhao Q, Liu H, Zhang Y, Wang J. Path planning fusion algorithm based on improved A-star and

adaptive dynamic window approach for mobile robot[J]. International Journal of Industrial

International Journal of Multimedia Computing

29

Engineering: Theory, Applications and Practice, 2023, 30(5): 1-15.

[6] Liu C, Mao Q, Chu X, Xie S. An improved A-star algorithm considering water current, traffic

separation and berthing for vessel path planning[J]. Applied Sciences, 2019, 9(6): 1057.

[7] Mi Z, Xiao H, Huang C. Path planning of indoor mobile robot based on improved A* algorithm

incorporating RRT and JPS[J]. AIP Advances, 2023, 13(4): 045313.

[8] Tang C, Claramunt C, Hu X, Zhou P. Geometric A-star algorithm: An improved A-star

algorithm for AGV path planning in a port environment[J]. IEEE Access, 2021, 9:

59196-59210.

[9] Bu X, Li G, Tong B, Zhang X. A robot navigation system based on improved A-star algorithm[J].

International Journal of Pattern Recognition and Artificial Intelligence, 2024, 38(16):

2456012.

[10] Huang J, Chen C, Shen J, Liu G, Xu F. A self-adaptive neighborhood search A-star algorithm

for mobile robots global path planning[J]. Computers and Electrical Engineering, 2025,

123(Part A): 110018.

[11] Li X, Hu X, Wang Z, Du Z. Path planning based on combination of improved A-star algorithm

and DWA algorithm[C]. 2020 2nd International Conference on Artificial Intelligence and

Advanced Manufacture (AIAM), 2020: 99-103.

[12] Liu Y, Zhang H, Wang L. Global dynamic path planning fusion algorithm combining Jump-A*

algorithm and dynamic window approach[J]. IEEE Access, 2021, 9: 19632-19638.

[13] Pavlik JA, Sewell EC, Jacobson SH. Two new bidirectional search algorithms[J].

Computational Optimization and Applications, 2021, 80(2): 377-409.

[14] Zhao J, Liu S, Li J. Research and implementation of autonomous navigation for mobile robots

based on SLAM algorithm under ROS[J]. Sensors, 2022, 22(11): 4172.

