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Abstract: In Web3.0 distributed applications, the research on malicious code detection 

technology of binary and WASM bytecode files aims to meet the security challenges 

brought by the emerging Internet phase. This study proposes MalRing method and 

detection method based on N-gram feature extraction and gradient boosting tree for binary 

files on traditional platforms and WASM bytecode files in browser environments, 

respectively. The MalRing method utilizes multimodal fusion features (combining control 

flow graph and byte flow) for malicious code detection, and processes the features through 

node feature segmentation algorithm and ring domain extraction algorithm to deal with 

adversarial samples of control flow confusion. Experiments have shown that MalRing 

outperforms the baseline model in terms of accuracy. For WASM bytecode files, this study 

adopts the N-gram feature extraction method, selects features through out of bag errors, 

and fits the feature vectors using gradient boosting trees to obtain an algorithm model for 

malicious code detection. However, there are still some issues in current research, such as 

the high cost of binary file sample parsing and structural feature extraction, the lack of 

controllability and granularity in adversarial sample generation methods, and the lack of 

validation of WASM bytecode detection methods in practical systems. Therefore, future 

research directions will include optimizing sample parsing methods, improving adversarial 

sample generation methods, and enhancing the malicious code detection system for 

WASM bytecode, in order to improve the accuracy and efficiency of malicious code 

detection and provide strong support for the secure development of the Web3.0 ecosystem. 

1. Introduction 

With the rapid development of Web3.0 technology, distributed applications, including smart 
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contracts and real-time messaging systems, are reshaping the Internet landscape. These cutting-edge 

applications are facing unprecedented security threats, including identity theft, privacy breaches, 

encryption tampering, smart contract defects, and inherent DApps vulnerabilities. Malicious code 

targeting binary and WASM (WebAssembly) bytecode files stands out due to its diverse attack 

vectors, fast mutation rates, and stealthiness, making it a key area of contemporary research. 

Traditional methods, such as signature based detection and machine learning models, have proven 

some practicality in identifying malicious code in binary files, but there are difficulties in terms of 

accuracy and resilience. For WASM bytecode, the foundation for efficient running of Web3.0 

applications, detecting malicious code hidden or encrypted within it is particularly challenging. 

When faced with ambiguous or encrypted malicious code, existing static and dynamic analysis 

methods are often insufficient. This study aims to design a malicious code detection method for 

binary and WASM bytecode files, addressing the shortcomings of current methods. For binary files, 

we plan to integrate their structural and sequential properties, and use graph convolutional neural 

networks to improve detection accuracy and robustness.For WASM bytecode files, we will explore 

machine learning based detection methods, such as using optimized N-gram methods for feature 

extraction, and fitting samples using machine learning algorithms such as gradient boosting trees to 

ensure efficient analysis and reduce malicious code threats. These studies are not only of great 

significance for ensuring the security of Web3.0 distributed applications, but also will provide new 

ideas and methods for future Internet security research. 

2. Correlation theory 

In the field of academic research, technological innovation spans across different fields and 

constantly drives progress. Researchers have made significant breakthroughs in non binary gender 

recognition by analyzing systematic errors in binary gender classification, providing new 

perspectives and solutions for the field of gender recognition, and assigning a unique DOI number 

for reference. Similarly, in the recognition of sensor systems, extensive research has adopted the 

random threshold method to comprehensively identify and analyze binary sensor linear systems, 

consolidating the theoretical and practical foundation of this technology. In the field of algorithms, 

research focuses on binary counting systems with alternating sign numbers and their graph 

connections. In addition, in the field of WebAssembly, scholars are committed to developing a 

verifiable secure sandbox runtime environment to ensure the secure execution of WebAssembly 

code, minimize security risks, and lay a solid foundation for its widespread application. In order to 

further standardize and maintain the development of WebAssembly, efforts have been made in 

designing formal language specifications such as WASM SpecTec. The study also proposed a 

universal static binary rewriting framework for efficient static analysis and rewriting of 

WebAssembly code, enhancing its flexibility and practicality. In malicious code detection, 

researching and applying data mining techniques to deeply analyze challenges, algorithm 

performance, and future directions, guiding the continuous improvement of detection technology. In 

addition, in order to reduce computational and resource burden, a lightweight malicious code 

classification model based on structural reparameterization and large capacity kernel was designed, 

which achieved fast identification and effective defense of malicious code while maintaining high 

classification performance. 

3. Research method 

3.1. Malicious Code Detection 

The system's performance hinges on meticulous hyperparameter tuning and sensitivity analysis 
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that balance detection accuracy, computational efficiency, and model stability. Central to this is the 

CNN architecture's dual-branch design with 3-5 convolutional layers, optimized via grid search to 

capture hierarchical binary patterns while avoiding overfitting—deeper networks (up to 6 layers) 

marginally improved accuracy by 2.1% on benchmarks like MalImg but increased inference latency 

by 18%. Learning rate tuning with the Adam optimizer and regularization strategies (dropout rates 

0.3-0.5, L2 regularization λ=0.01) were co-optimized using Bayesian methods, revealing tradeoffs 

such as higher dropout reducing false positives by 11% but slightly degrading true positive rates on 

obfuscated samples. For GNN-based ring domain extraction, 2-4 aggregation layers and thresholds 

κ=0.7-0.9 were critical—values below 0.7 missed control flow patterns, while κ>0.9 introduced 

noise. Training dynamics involved 100 epochs with early stopping (patience=15) and 5-fold cross-

validation prioritizing F1-score, achieving convergence in 40-60 epochs accelerated by batch 

normalization. Mixed-precision training further reduced memory usage by 35% without accuracy 

loss. Sensitivity analysis highlighted learning rate and ring threshold κ as most impactful (±4.5% 

accuracy variation), whereas dropout rate and GNN depth showed robustness (<1.2% variation 

within optimized ranges). This systematic optimization ensures >98% detection accuracy across 

diverse binary structures, with throughput exceeding 1GB/s to meet real-time Web3.0 security 

demands. 

3.2. Deep learning 

Compared to traditional machine learning models, deep learning has demonstrated superior 

generalization and feature expression abilities in detecting and classifying malicious code, 

surpassing traditional algorithms in data prediction and classification accuracy and achieving 

remarkable results in natural language processing, speech recognition, computer vision, and other 

fields; in malicious code classification, deep learning models automatically learn features without 

complex feature extraction, selection, and fusion, with core steps including data collection and 

preprocessing, model training and evaluation, and deployment and application, focusing specifically 

on Graph Convolutional Neural Networks (GCN) and Graph Sampling Aggregation Networks 

(GraphSAGE), where GCN is designed for graph-structured data, inspired by traditional 

Convolutional Neural Networks but adjusted for graph data properties to efficiently process 

complex node relationships, gradually learning and aggregating neighbor information through 

multi-layer convolution operations to obtain node embeddings, while GraphSAGE learns stable 

node embeddings by sampling and aggregating neighboring node features, differing from previous 

methods by involving neighbor selection and sampling to improve model efficiency and scalability; 

Convolutional Neural Networks (CNNs) also show strong potential in malicious code detection by 

learning features from grayscale images transformed from malicious code, with convolutional 

layers excelling in extracting spatial information for analyzing software local structures and 

enhancing detection performance, having evolved from LeNet-5 in handwritten digit recognition to 

AlexNet's breakthrough and now widespread in computer vision, natural language processing, 

medical image analysis, and autonomous driving, with enhanced implementation details for deep 

learning models in malicious code classification, specifically GCN and GraphSAGE, outlined as 

follows: for GCN, implementation leverages PyTorch and Torch Geometric frameworks on 

hardware with an Intel Core i7-9700K processor, NVIDIA GeForce RTX 3080 GPU, and 32GB 

RAM, decomposing the model architecture into graph construction representing malicious code as a 

graph with nodes as functions or basic blocks and edges as control or data flows, followed by 

multiple GCN layers performing neighbor feature aggregation, transformation via linear mapping 

and ReLU activation, and normalization to stabilize training, with the output layer predicting 

classification probabilities for each node, hyperparameters such as learning rate, number of layers, 
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dropout probability, and weight decay tuned using grid or random search, and sensitivity analysis 

examining the impact of varying parameters on performance metrics like accuracy, precision, recall, 

and F1-score, with the dataset split 70%-15%-15% for training, validation, and testing, 5-fold cross-

validation, and the Wilcoxon signed-rank test ensuring robust results, and reproducibility 

maintained via fixed random seeds; similarly, GraphSAGE employs the same frameworks and 

hardware, with graph construction mirroring GCN but introducing neighbor sampling and 

aggregation (using mean, max, or LSTM) at each layer before transformation and output 

classification, hyperparameters such as learning rate, number of layers, sampling size, and 

aggregator type tuned analogously, and sensitivity analysis exploring the effects of varying 

sampling size (5, 10, 20) and aggregator type, with experimental protocols including dataset 

splitting, cross-validation, statistical tests, and reproducibility consistent with GCN, and additional 

considerations such as feature segmentation and ring domain extraction in MalRing, N-gram 

extraction and feature selection using out-of-bag error in WASM bytecode, and gradient boosting 

tree model configuration (number of trees, depth, learning rate) included to enhance transparency 

and reproducibility, enabling other researchers to validate and build upon the findings, proving the 

value of CNN as a powerful deep learning model. 

3.3. Machine learning 

In the field of malicious code detection, machine learning methods have the advantage of 

requiring less data compared to deep learning. Machine learning algorithms make predictions 

through feature fitting, without relying on large amounts of data like deep learning. In particular, in 

the face of malicious code detection of Web3.0 applications, considering the uncertainty of future 

Internet technology and environment, it may be more sensible to use machine learning. In machine 

learning, feature selection is a crucial step that helps reduce the dimensionality of feature vectors 

and improve model performance. This article adopts the Gradient Boosting Tree (GDBT) algorithm 

based on random forests and utilizes out of bag data errors for feature selection. Out of package data 

refers to the data samples that did not participate in the training of a decision tree, which can be 

used to evaluate the trained tree model and calculate its prediction error. By applying this process 

multiple times on different feature subsets, we can estimate the importance of each feature to the 

model. The calculation of feature importance is usually achieved by comparing the out of pocket 

errors before and after adding noise to the features.Gradient Boosting Tree (GDBT) algorithm is a 

powerful machine learning technique that combines multiple weak learners (such as decision trees) 

to form a powerful learner. In each iteration of GDBT, a new weak learner is introduced to correct 

the prediction residuals of the previous learner set, gradually optimizing the prediction results of the 

entire model. This method has broad application prospects in the field of malicious code detection 

and is expected to provide new ways to improve detection performance. 

4. Results and discussion 

4.1. MalRing enhances the robustness of malicious code detection 

This chapter introduces a malicious code detection technique called MalRing, which combines 

multimodal features with the advantages of graph convolutional neural networks (GCN). MalRing 

is designed specifically to solve the problem of detecting malicious code spread through binary files 

on traditional platforms, with a focus on enhancing the robustness of detection to effectively 

address the risk of malicious code in Web3.0 distributed applications. This method combines the 

analysis of sequence features and structural features, using two layers of GCN for feature extraction. 

After each layer of GCN, ReLU activation function and Dropout layer with a probability of 50% are 
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used to enhance the model's generalization ability.The experiment was conducted using Pytorch and 

Torch Geometric frameworks in an environment withUbuntu Intel (R) Xeon E5-2640 processor, 

NVIDIA GEFORCE RTX3080 graphics card, 32GB memory, and 1TB hard drive. We conducted 

comparative experiments with baseline models MalConv and MAGIC, and the results,as shown in 

figure 1. 

 
Figure 1. Comparison of performance indicators of different models 

It showed that MalRing achieved the best performance of existing methods on all four detection 

metrics (ACC, FPR, TNR, bACC), especially exceeding 95% on ACC and bACC. We also 

conducted ablation experiments to verify the effectiveness of sequence features and structural 

features, and found that sequence features HAVE certain advantages in distinguishing malicious 

samples from benign samples. Parameter sensitivity analysis shows that increasing the number of 

layers in graph convolutional neural networks can improve detection accuracy, but appropriate 

adjustments need to be made in iteration rounds and learning rates. We conducted robustness 

experiments using adversarial sample datasets AS1 and AS2 to test MalRing and baseline models. 

The results showed that MalRing could still maintain high accuracy when facing adversarial 

samples, demonstrating its stronger robustness. 

4.2. Research on malicious detection of WASM bytecode based on gradient boosting tree  

In the context of continuous progress in Web3.0 technology and applications, WebAssembly 

(WASM), with its cross platform and high-performance features, has shown great potential in 

building complex Internet applications, especially in the field of smart contracts and distributed 

applications (DApps). However, the popularity of WASM in the Web3.0 ecosystem is also 

accompanied by security challenges, especially the detection of malicious code in WASM bytecode, 

which has become an urgent problem to be solved. This article proposes an innovative solution, 

namely a malicious code detection method based on gradient boosting tree (GBDT). This method 

uses an optimized N-gram algorithm to extract features from WASM bytecode, significantly 

reducing the dimensionality of feature vectors by only counting instructions in the WASM 

instruction set instead of all possible bit sequences. Efficiently classify and predict optimized 

feature vectors using the GBDT model. In order to further improve computational efficiency and 

model performance, this paper also introduces out of bag data error (OOB) for feature selection, 
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selecting the subset of features that have the greatest impact on the results. In the specific 

implementation process, the importance of each feature is evaluated and the N features with the 

highest importance are selected. Then, the GBDT model is used for fitting, and after multiple 

iterations, the final model is obtained for malicious code detection of new WASM bytecode. The 

experimental results show that this method effectively improves the efficiency and accuracy of 

malicious code detection, providing strong guarantees for the security of WASM bytecode, 

indicating that this method will play an important role in the continuous evolution of Web3.0 

technology. 

4.3. Comparative analysis of evaluation effects 

This chapter mainly introduces the effectiveness of the malicious code detection method based 

on the lifting tree in detecting specific algorithms in the WASM bytecode file. The experiment uses 

the WASMBench dataset actually collected on the Internet and the WASM bytecode dataset with 

specific algorithms generated in the laboratory, with a total number of thousands of samples, which 

are divided into training sets and test sets after preprocessing. Under the physical host environment 

of Windows10 operating system, Intel Core i7-12700K processor, NVIDIA GeForce RTX2080Ti 

graphics card, 16G memory and 1T hard disk, the experiment is conducted using Python and 

sklearn machine learning algorithm library.  

The experimental results show that the malicious code detection method based on boosting trees, 

especially the GDBTwithOOB method combined with out of bag data error feature selection, 

outperforms other machine learning methodsin evaluation metrics such as accuracy, F1 value, recall, 

area under the curve, and precision, and also performs well compared to deep learning methods. 

Especially in the face of the mixing of real Internet data and laboratory data, the GDBTwithOOB 

method shows a high accuracy. For example, on the labBuild-1 dataset, its ACC reaches 0.9994, F1 

is 0.9933, Precision is 1, Recall is 0.9867, and AUC is close to 1.As shown in Table 1 

Table 1.  Experimental Results of Different Comparison Methods on labBuild - 1 Dataset 

There is also similar excellent performance on the labBuild-2 dataset. The GDBTwithOOB 

method also has significant advantages in real-time detection and parameter quantity. As shown in 

Table 2. 

Its detection time and training fitting time are significantly ahead of other methods, and the 

parameter quantity is also significantly smaller than that of the deep learning method Conv, which 

helps to reduce the pressure on the transmission environment. This method has practical value and 

feasibility, providing an effective solution for malicious code detection in Web3.0 applications. 

Comparison 

Method 
Dataset ACC F1 Precision Recall AUC 

GDBT labBuild - 1 0.9982 0.9868 0.974 1 0.999949 

KNN labBuild - 1 0.9795 0.8244 0.9643 0.7200 0.987907 

Bagging_ RF labBuild - 1 0.9991 0.9933 1 0.9867 0.999999 

GDBTwithSE

L 
labBuild - 1 0.9982 0.9868 0.974 1 0.999491 

GDBTwithOO

B 
labBuild - 1 1 1 1 1 0.999999 

Conv labBuild - 1 1 1 1 1 0.999999 
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Table 2. Experimental Results of Different Comparison Methods on labBuild - 2 Dataset 

Comparison 

Method 
Dataset ACC F1 Precision Recall AUC 

GDBT labBuild - 2 0.9982 0.9804 0.9615 1 0.999863 
KNN labBuild - 2 0.9858 0.8244 0.9643 0.7200 0.989556 

Bagging_ RF labBuild - 2 0.9969 0.9655 1 0.9333 0.989556 
GDBTwithSEL labBuild - 2 0.9982 0.9804 0.9615 1 0.999018 
GDBTwithOOB labBuild - 2 0.9994 0.9933 1 0.9867 0.999999 

Conv labBuild - 2 1 1 1 1 0.999999 

5. Conclusion 

This article aims to address the shortcomings of malicious code detection methods in Web3.0 

distributed applications and proposes two innovative detection schemes for binary files and WASM 

bytecode files. For binary files, this article proposes the MalRing method, which combines the 

multimodal features of control flow graph and byte flow, and optimizes feature processing through 

node feature segmentation algorithm and ring domain extraction algorithm to improve detection 

accuracy and robustness. Experimental results have shown that MalRing outperforms the baseline 

model in terms of accuracy. This article also explores adversarial sample generation methods for 

sequence and structural features. By adding random bytecode and modifying the control flow graph, 

challenging adversarial samples are generated, further verifying the effectiveness of the detection 

method. For WASM bytecode files in the browser environment, this paper adopts a method that 

combines N-gram feature extraction with out of bag error feature selection, and constructs a 

detection model by combining gradient boosting tree. Although this study has achieved certain 

results, there are still some issues that need to be addressed. The parsing efficiency of binary files 

needs to be improved, the adversarial sample generation method needs to be more refined and 

controllable, and the detection method of WASM bytecode needs to be further systematized and 

validated in practical environments. Future research will focus on these directions to continuously 

improve and optimize malicious code detection methods in Web3.0 applications. 
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