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Abstract: With the rapid development of Internet technology and the comprehensive 

arrival of the era of big data, the development of enterprise business scale and the rise of 

logic complexity make coupled distributed systems play an increasingly important role in 

enterprise-level applications. The multi-task dynamic scheduling scheme based on the 

proposed method has problems such as poor manageability, poor task scheduling ability 

and poor usability. Therefore, this paper studies and constructs the coupled distributed 

system considering the multi-task dynamic scheduling. This paper firstly introduces the 

relevant theories. In the system theory part, it mainly introduces the scheduling module, 

followed by the system design. In the system design part, the task scheduling is mainly 

designed. Finally, the system implementation is carried out. Scheduling accuracy is 

analyzed. 

1. Introduction 

With the rapid development of Internet technology and the full arrival of the era of big data, for 

large-scale enterprise-level applications, due to the complexity of daily business scenarios, the 

problem of multi-task scheduling is increasingly valued by enterprises and has become an 

enterprise-level application. An indispensable component in the application [1-2]. The problem of 

multitask scheduling in coupled distributed systems has always been a research hotspot. 

Considering the operating cost and practical economic benefits of multitask scheduling, some 

existing research works aim to reduce the system cost of task transmission or computation [3]. 

At present, many scholars have carried out in-depth research on multi-task dynamic scheduling 

and coupled distributed systems and achieved good results. For example, researchers such as 

Almeida A F use three different architectural patterns to decompose a monolithic application into 

microservices, and use detailed metrics to compare the two architectural styles, and argue that 

distributed systems provide a shift from the traditional way of building systems, the monolithic 
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system considered as the ancestor of microservices cannot meet the needs of today's large and 

complex applications [4]. Scholars such as Limam A proposed an enhanced faulty node detection 

method using interval weighting factors, which uses pseudo-random BCH codes for distributed 

network control systems to monitor node behavior, and the master node collects the single-bit BCH 

of each slave node. The replacement of the cyclic redundancy check CRC code by the code, this 

scheme can be used to detect and prevent serious damage caused by node failure [5]. Although there 

are many researches on multi-task scheduling and coupled distributed systems, there are few studies 

on coupled distributed systems considering multi-task dynamic scheduling. Multi-task dynamic 

scheduling is of great significance for the construction and research of coupled distributed systems 

[6-7]. 

The construction of the coupled distributed system in this paper is based on the consideration of 

multi-task dynamic scheduling. The structure of this paper can be divided into three parts, including 

related theory, system design and system implementation. In the related theory part, it mainly 

introduces the scheduling module and the multi-task cooperative distribution strategy. In the system 

design part, it mainly includes the design of loosely coupled system architecture, task scheduling 

system and adaptive scheduling strategy. In the system implementation part, the accuracy of task 

scheduling is tested and the scalability of adaptive scheduling is analyzed. 

2. Related Theories 

2.1. Scheduling Module 

The main application of a distributed system is to provide a suitable computing platform for 

tasks [8]. In what form a task is represented in this platform, there must be a standardized 

agreement between the scheduling platform and the user [9]. In the coupled distributed simulation 

system, tasks are submitted in the form of working conditions. Task scheduling refers to the 

scheduling of tasks in working conditions. First, the management method of working conditions in 

this system must be defined, and then the management method of tasks in working conditions. In 

this way, the scheduling of the situation can be started [10]. Figure 1 shows the design of the 

scheduling module: 

Pre-scheduling of working conditions

Coupler Load Balancing

Working condition task scheduling

Algorithm management

Database access operation interface Communication Interface External memory access operation interface

scheduling module

Data interaction layer

 

Figure 1. Design diagram of scheduling module 
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2.2. Multi-Task Collaborative Resource Allocation Strategy 

It is impossible for the system to treat each resource scheduling data processing computing task 

equally, so it is necessary to weight each task to distinguish the importance of the task [11]. In the 

task-level resource scheduler in the coupled distributed system, different tasks are independent of 

each other, and their resources are isolated in the distributed cluster [12]. Because stream data 

processing tasks occupy resources in the system through preemption, that is, on a first-come, 

first-served basis [13-14]. So when there are multiple tasks in a distributed cluster, the first task to 

enter the system will get as many resources as it needs. 

task one

task two
Task-level resource scheduler

Whether the current system resources can meet the

Direct allocation of system resources Co-allocate resources through middleware scheduler

Access to resources

Access to resources

Y
N

 

Figure 2. Multi-task collaborative resource allocation diagram 

As shown in Figure 2, when different stream data processing tasks enter the cluster, the 

middleware scheduler needs to determine whether the current system resources can meet the task 

requirements. If it can be satisfied, the system will allocate resources directly through the 

middleware scheduler to meet the task requirements. If the current system cannot fully meet the 

resource requirements of each data processing task, the middleware scheduler will compare the 

weighted delay ratio of the streaming data processing tasks of each allocation scheme, and then 

calculate which scheme is more reasonable for the current system. 

3. System Design 

3.1. System Loosely Coupled Architecture Design 

The coupled distributed system adopts the distributed micro-service architecture design as a 

whole, which can effectively improve the flexibility, reusability and scalability of the distributed 

timing task scheduling system [15]. The system is generally divided into four microservices, 

registry and database. The four microservices include task execution microservices, task scheduling 

microservices, task processing microservices and task alarming microservices. The functional 

modules of the distributed timing task scheduling system are shown in Figure 3. The system can be 

divided into four modules including a unified management module, a task scheduling module, a 

task processing module, and a task execution module. The unified management module includes 
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task basic management and task scheduling management, the task scheduling module includes task 

preemption, task activation and task triggering, the task processing module includes fragmentation 

processing and DAG processing, and the task execution module includes task registration and task 

execution. 

Distributed Task Scheduling System
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Figure 3. System function block diagram 

3.2. Task Scheduling System 

The number of iterations required for the model to converge varies for different types of tasks. 

Experience shows that the model will have better performance as the number of iterations increases. 

However, too many iterations will also lead to problems such as overfitting of the model and a low 

proportion of computing time. In addition, static scheduling cannot sense the dynamic changes of 

computing node performance, cannot achieve task migration, and has no good fault tolerance 

measures. Once the scheduling is abnormal, the training can only be restarted, which greatly wastes 

system resources and time. Therefore, this section proposes a task scheduling system for a coupled 

distributed system. The scheduling system can improve the portability, scalability and adaptability 

of training. 

The task scheduling system can evaluate performance differences according to the resource 

statistics of each computing node. To represent node computing performance, the underlying task is 

executed multiple times over a period of time and the computing performance is sampled. Formula 

(1) and formula (2) are the calculation formulas for the actual performance of the node: 

1
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(1) 

1,  fgDD gff ，
                      

(2) 

Df represents the final performance index of node f at the nth sampling point, Df,g is the final 

performance index of m sampling points before the current sampling point, and,Df,n represents the 

performance index of the basic task running at the current sampling point. If f is smaller than the 

window value of forward sampling,Df,n are directly used as the final performance index of this 

sampling. α and β are used as the weights of historical sampling and current sampling, and the sum 

of the two is 1. After the final performance calculation method of the node at the sampling point is 

given, the algorithm is called to complete the node and its resource allocation: 
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3.3. Adaptive Scheduling Strategy 

Adaptive scheduling strategy is a scheduling strategy proposed on the basis of dynamic 

scheduling strategy, which can further reduce the synchronization time and endow the scheduling 

system with adaptability [16-17]. The adaptive scheduling strategy can realize the load balancing of 

data parallel or model parallel training. Load balancing, that is, considering the performance of each 

computing node to achieve adaptive allocation of tasks [18]. Redistributing tasks through load 

balancing is beneficial to improve the parallel efficiency of computing nodes. To address the 

dynamic performance differences arising during training, this section proposes an adaptive 

scheduling strategy. This strategy balances the dynamic performance differences between nodes by 

adjusting the amount of tasks. 
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Figure 4. Using data partitioning to generate local training data graph 

As shown in Figure 4, there are 5 worker nodes in the figure, so each worker node should hold 

about 20% of the training data of the complete dataset. Low number of iterations can lead to poor 

model accuracy or underfitting: high number of iterations can lead to model overfitting and poor 

performance on the test set. In order to improve the efficiency of task execution, the timing of outer 

iteration termination is determined by the task scheduling system and the specific number of 

iterations is not set. 

4. System Implementation 

4.1. Scheduling Accuracy Test 

The test goal of the scheduling accuracy test is to test whether the scheduled tasks can be 

accurately scheduled at a predetermined time point under different concurrency of the distributed 

system. The test indicator is whether the average scheduling delay of the scheduled tasks can be 

controlled within 1s. The scheduling accuracy test of the system's single task scheduler is divided 
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into three groups, namely the single-thread group, the multi-thread group with 3 threads, and the 

multi-thread group with 5 threads. The following operations are performed for each test group: 10 

rounds of tests are performed in scenarios with different concurrency of scheduled tasks, and the 

average delay time triggered by task scheduling is finally counted. The test results are shown in 

Figure 5. 

 

Figure 5. The relationship between the scheduling delay of a single task scheduler and the number 

of concurrent tasks 

Based on the experimental results in Figure 5, the following conclusions can be drawn: The 

multi-task scheduling strategy of the coupled distributed system has good scheduling accuracy, and 

can control the average scheduling delay of timed tasks within ls under different task concurrency, 

basically within the acceptable range for users. 

4.2. Scalability of Adaptive Scheduling 

The adaptive scheduling strategy imposes penalty tasks on some nodes through data division to 

achieve node performance balance. In addition, the data partition strategy relies on the data 

augmentation function to expand the local task volume, and terminates the training in time through 

the early stop strategy to improve the convergence speed. 

Table 1. Specific distribution of iteration time 

Scheduling 

method 
Training time(s) 

Aggregation 

time(s) 

Communication 

time(s) 

Cumulative 

iteration 

Adaptive 

scheduling 
363 26 16 24 

Non-adaptive 

scheduling 
353 52 33 50 

 

Table 1 shows the time distribution of two different scheduling strategies. When non-adaptive 
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scheduling is used, the average training time per round is about 7s, and the total training time is 

353s. When using adaptive scheduling and applying data partitioning, the average training time per 

round is about 15s, and the total training time is 363s. The adaptive scheduling strategy uses the 

data partition strategy to balance the performance differences of computing nodes, and 

appropriately increases the amount of training data through the load factor to reduce the number of 

iterations and achieve the goal of convergence as soon as possible. From the above analysis, it can 

be seen that data partitioning has good performance and scalability, and can further realize 

self-adaptation on the basis of realizing dynamic scheduling strategy. This kind of self-adaptation is 

manifested in that the dynamic performance changes and iteration times of the adaptive computing 

nodes are adaptive to different tasks. 

5. Conclusion 

In this paper, the construction of the coupled distributed system takes into account the needs of 

multi-task dynamic scheduling, and meets the needs of the development of enterprise multi-task 

scheduling. In the system implementation part, through the analysis of the accuracy of system task 

scheduling, it is found that the multi-task scheduling accuracy of the coupled distributed system is 

good and can meet the needs of users. It has good performance and scalability, and can further 

realize self-adaptation on the basis of realizing dynamic scheduling strategy. Although the coupled 

distributed system proposed in this paper takes into account the dynamic scheduling of multitasking, 

there are still many deficiencies that need to be improved. 
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