
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2021.020207

ISSN 2790-0916 Vol. 2, Issue 2: 51-58

Copyright: © 2021 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

51

Coupled Distributed Systems Considering Multitasking

Dynamic Scheduling Algorithms

Venpaty Velmugan
*

Universiti Teknologi MARA, Malaysia

*
corresponding author

Keywords: Multitask Scheduling, Coupled Distributed System, Dynamic Scheduling,

System Construction

Abstract: With the rapid development of Internet technology and the comprehensive

arrival of the era of big data, the development of enterprise business scale and the rise of

logic complexity make coupled distributed systems play an increasingly important role in

enterprise-level applications. The multi-task dynamic scheduling scheme based on the

proposed method has problems such as poor manageability, poor task scheduling ability

and poor usability. Therefore, this paper studies and constructs the coupled distributed

system considering the multi-task dynamic scheduling. This paper firstly introduces the

relevant theories. In the system theory part, it mainly introduces the scheduling module,

followed by the system design. In the system design part, the task scheduling is mainly

designed. Finally, the system implementation is carried out. Scheduling accuracy is

analyzed.

1. Introduction

With the rapid development of Internet technology and the full arrival of the era of big data, for

large-scale enterprise-level applications, due to the complexity of daily business scenarios, the

problem of multi-task scheduling is increasingly valued by enterprises and has become an

enterprise-level application. An indispensable component in the application [1-2]. The problem of

multitask scheduling in coupled distributed systems has always been a research hotspot.

Considering the operating cost and practical economic benefits of multitask scheduling, some

existing research works aim to reduce the system cost of task transmission or computation [3].

At present, many scholars have carried out in-depth research on multi-task dynamic scheduling

and coupled distributed systems and achieved good results. For example, researchers such as

Almeida A F use three different architectural patterns to decompose a monolithic application into

microservices, and use detailed metrics to compare the two architectural styles, and argue that

distributed systems provide a shift from the traditional way of building systems, the monolithic

Distributed Processing System

52

system considered as the ancestor of microservices cannot meet the needs of today's large and

complex applications [4]. Scholars such as Limam A proposed an enhanced faulty node detection

method using interval weighting factors, which uses pseudo-random BCH codes for distributed

network control systems to monitor node behavior, and the master node collects the single-bit BCH

of each slave node. The replacement of the cyclic redundancy check CRC code by the code, this

scheme can be used to detect and prevent serious damage caused by node failure [5]. Although there

are many researches on multi-task scheduling and coupled distributed systems, there are few studies

on coupled distributed systems considering multi-task dynamic scheduling. Multi-task dynamic

scheduling is of great significance for the construction and research of coupled distributed systems

[6-7].

The construction of the coupled distributed system in this paper is based on the consideration of

multi-task dynamic scheduling. The structure of this paper can be divided into three parts, including

related theory, system design and system implementation. In the related theory part, it mainly

introduces the scheduling module and the multi-task cooperative distribution strategy. In the system

design part, it mainly includes the design of loosely coupled system architecture, task scheduling

system and adaptive scheduling strategy. In the system implementation part, the accuracy of task

scheduling is tested and the scalability of adaptive scheduling is analyzed.

2. Related Theories

2.1. Scheduling Module

The main application of a distributed system is to provide a suitable computing platform for

tasks [8]. In what form a task is represented in this platform, there must be a standardized

agreement between the scheduling platform and the user [9]. In the coupled distributed simulation

system, tasks are submitted in the form of working conditions. Task scheduling refers to the

scheduling of tasks in working conditions. First, the management method of working conditions in

this system must be defined, and then the management method of tasks in working conditions. In

this way, the scheduling of the situation can be started [10]. Figure 1 shows the design of the

scheduling module:

Pre-scheduling of working conditions

Coupler Load Balancing

Working condition task scheduling

Algorithm management

Database access operation interface Communication Interface External memory access operation interface

scheduling module

Data interaction layer

Figure 1. Design diagram of scheduling module

Distributed Processing System

53

2.2. Multi-Task Collaborative Resource Allocation Strategy

It is impossible for the system to treat each resource scheduling data processing computing task

equally, so it is necessary to weight each task to distinguish the importance of the task [11]. In the

task-level resource scheduler in the coupled distributed system, different tasks are independent of

each other, and their resources are isolated in the distributed cluster [12]. Because stream data

processing tasks occupy resources in the system through preemption, that is, on a first-come,

first-served basis [13-14]. So when there are multiple tasks in a distributed cluster, the first task to

enter the system will get as many resources as it needs.

task one

task two
Task-level resource scheduler

Whether the current system resources can meet the

Direct allocation of system resources Co-allocate resources through middleware scheduler

Access to resources

Access to resources

Y
N

Figure 2. Multi-task collaborative resource allocation diagram

As shown in Figure 2, when different stream data processing tasks enter the cluster, the

middleware scheduler needs to determine whether the current system resources can meet the task

requirements. If it can be satisfied, the system will allocate resources directly through the

middleware scheduler to meet the task requirements. If the current system cannot fully meet the

resource requirements of each data processing task, the middleware scheduler will compare the

weighted delay ratio of the streaming data processing tasks of each allocation scheme, and then

calculate which scheme is more reasonable for the current system.

3. System Design

3.1. System Loosely Coupled Architecture Design

The coupled distributed system adopts the distributed micro-service architecture design as a

whole, which can effectively improve the flexibility, reusability and scalability of the distributed

timing task scheduling system [15]. The system is generally divided into four microservices,

registry and database. The four microservices include task execution microservices, task scheduling

microservices, task processing microservices and task alarming microservices. The functional

modules of the distributed timing task scheduling system are shown in Figure 3. The system can be

divided into four modules including a unified management module, a task scheduling module, a

task processing module, and a task execution module. The unified management module includes

Distributed Processing System

54

task basic management and task scheduling management, the task scheduling module includes task

preemption, task activation and task triggering, the task processing module includes fragmentation

processing and DAG processing, and the task execution module includes task registration and task

execution.

Distributed Task Scheduling System

Unified management

module
task scheduling module

task processing

module

task execution

module

B
asic task

m
an

ag
em

en
t

task
 sch

ed
u

lin
g

m
an

ag
em

en
t

task
 p

reem
p

tio
n

task
 activ

atio
n

task
 trig

g
er

F
rag

m
en

tatio
n

D
A

G
 p

ro
cessin

g

task
 reg

istratio
n

W
illfu

l ex
ecu

tio
n

Figure 3. System function block diagram

3.2. Task Scheduling System

The number of iterations required for the model to converge varies for different types of tasks.

Experience shows that the model will have better performance as the number of iterations increases.

However, too many iterations will also lead to problems such as overfitting of the model and a low

proportion of computing time. In addition, static scheduling cannot sense the dynamic changes of

computing node performance, cannot achieve task migration, and has no good fault tolerance

measures. Once the scheduling is abnormal, the training can only be restarted, which greatly wastes

system resources and time. Therefore, this section proposes a task scheduling system for a coupled

distributed system. The scheduling system can improve the portability, scalability and adaptability

of training.

The task scheduling system can evaluate performance differences according to the resource

statistics of each computing node. To represent node computing performance, the underlying task is

executed multiple times over a period of time and the computing performance is sampled. Formula

(1) and formula (2) are the calculation formulas for the actual performance of the node:

1
1

1

,,  


mnDD
m

D
m

mng

nfgff ，

(1)

1,  fgDD gff ，

(2)

Df represents the final performance index of node f at the nth sampling point, Df,g is the final

performance index of m sampling points before the current sampling point, and,Df,n represents the

performance index of the basic task running at the current sampling point. If f is smaller than the

window value of forward sampling,Df,n are directly used as the final performance index of this

sampling. α and β are used as the weights of historical sampling and current sampling, and the sum

of the two is 1. After the final performance calculation method of the node at the sampling point is

given, the algorithm is called to complete the node and its resource allocation:

Distributed Processing System

55

3.3. Adaptive Scheduling Strategy

Adaptive scheduling strategy is a scheduling strategy proposed on the basis of dynamic

scheduling strategy, which can further reduce the synchronization time and endow the scheduling

system with adaptability [16-17]. The adaptive scheduling strategy can realize the load balancing of

data parallel or model parallel training. Load balancing, that is, considering the performance of each

computing node to achieve adaptive allocation of tasks [18]. Redistributing tasks through load

balancing is beneficial to improve the parallel efficiency of computing nodes. To address the

dynamic performance differences arising during training, this section proposes an adaptive

scheduling strategy. This strategy balances the dynamic performance differences between nodes by

adjusting the amount of tasks.

Master

Slave1

Slave2

Slave3

Slave4

Slave5

default data

new training data

default data random increment

default data random increment Dynamic increment

regular allocation All data

Data partitioning strategy

1. NFS share

2. Peer-to-peer communication

20%

25%

5%

50%

Figure 4. Using data partitioning to generate local training data graph

As shown in Figure 4, there are 5 worker nodes in the figure, so each worker node should hold

about 20% of the training data of the complete dataset. Low number of iterations can lead to poor

model accuracy or underfitting: high number of iterations can lead to model overfitting and poor

performance on the test set. In order to improve the efficiency of task execution, the timing of outer

iteration termination is determined by the task scheduling system and the specific number of

iterations is not set.

4. System Implementation

4.1. Scheduling Accuracy Test

The test goal of the scheduling accuracy test is to test whether the scheduled tasks can be

accurately scheduled at a predetermined time point under different concurrency of the distributed

system. The test indicator is whether the average scheduling delay of the scheduled tasks can be

controlled within 1s. The scheduling accuracy test of the system's single task scheduler is divided

Distributed Processing System

56

into three groups, namely the single-thread group, the multi-thread group with 3 threads, and the

multi-thread group with 5 threads. The following operations are performed for each test group: 10

rounds of tests are performed in scenarios with different concurrency of scheduled tasks, and the

average delay time triggered by task scheduling is finally counted. The test results are shown in

Figure 5.

Figure 5. The relationship between the scheduling delay of a single task scheduler and the number

of concurrent tasks

Based on the experimental results in Figure 5, the following conclusions can be drawn: The

multi-task scheduling strategy of the coupled distributed system has good scheduling accuracy, and

can control the average scheduling delay of timed tasks within ls under different task concurrency,

basically within the acceptable range for users.

4.2. Scalability of Adaptive Scheduling

The adaptive scheduling strategy imposes penalty tasks on some nodes through data division to

achieve node performance balance. In addition, the data partition strategy relies on the data

augmentation function to expand the local task volume, and terminates the training in time through

the early stop strategy to improve the convergence speed.

Table 1. Specific distribution of iteration time

Scheduling

method
Training time(s)

Aggregation

time(s)

Communication

time(s)

Cumulative

iteration

Adaptive

scheduling
363 26 16 24

Non-adaptive

scheduling
353 52 33 50

Table 1 shows the time distribution of two different scheduling strategies. When non-adaptive

0

200

400

600

800

1000

1200

1400

1600

1000 3000 5000 10000 15000 20000

S
ch

ed
u
li

n
g
 d

el
ay

Number of timed tasks

single thread three threads five threads

Distributed Processing System

57

scheduling is used, the average training time per round is about 7s, and the total training time is

353s. When using adaptive scheduling and applying data partitioning, the average training time per

round is about 15s, and the total training time is 363s. The adaptive scheduling strategy uses the

data partition strategy to balance the performance differences of computing nodes, and

appropriately increases the amount of training data through the load factor to reduce the number of

iterations and achieve the goal of convergence as soon as possible. From the above analysis, it can

be seen that data partitioning has good performance and scalability, and can further realize

self-adaptation on the basis of realizing dynamic scheduling strategy. This kind of self-adaptation is

manifested in that the dynamic performance changes and iteration times of the adaptive computing

nodes are adaptive to different tasks.

5. Conclusion

In this paper, the construction of the coupled distributed system takes into account the needs of

multi-task dynamic scheduling, and meets the needs of the development of enterprise multi-task

scheduling. In the system implementation part, through the analysis of the accuracy of system task

scheduling, it is found that the multi-task scheduling accuracy of the coupled distributed system is

good and can meet the needs of users. It has good performance and scalability, and can further

realize self-adaptation on the basis of realizing dynamic scheduling strategy. Although the coupled

distributed system proposed in this paper takes into account the dynamic scheduling of multitasking,

there are still many deficiencies that need to be improved.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Wang X, Shahidehpour M, Jiang C, et al. Resilience Enhancement Strategies for Power

Distribution Network Coupled With Urban Transportation System. Smart Grid, IEEE

Transactions on, 2019, 10(4):4068-4079. https://doi.org/10.1109/TSG.2018.2848970

[2] Juliza J, Abdul R R, Hafiz F M, et al. Analysis on the Effect of Sensor Views in Image

Reconstruction Produced by Optical Tomography System Using Charge-Coupled Device. IEEE

transactions on image processing : a publication of the IEEE Signal Processing Society, 2018,

27(4):1689-1696. https://doi.org/10.1109/TIP.2017.2783620

[3] Mmc A, Vndc A, Sm B, et al. Asymptotic stability for a strongly coupled Klein-Gordon system in

an inhomogeneous medium with locally distributed damping - ScienceDirect. Journal of

Differential Equations, 2020, 268(2):447-489. https://doi.org/10.1016/j.jde.2019.08.011

Distributed Processing System

58

[4] Almeida A F, Cavalcanti M M, Gonzalez R B, et al. Uniform decay rate estimates for the

coupled semilinear wave system in inhomogeneous media with locally distributed nonlinear

damping. Asymptotic Analysis, 2019, 117(41):1-45. https://doi.org/10.3233/ASY-191547

[5] Limam A, Boukhatem Y, Benabderrahmane B. General Decay Result for a Type III

Thermoelastic Coupled System with Acoustic Boundary Conditions in the Presence of

Distributed Delay. Mathematical Physics Analysis and Geometry, 2021(2):175-200.

https://doi.org/10.15407/mag17.02.175

[6] Falsone A, Prandini M. A Distributed Dual Proximal Minimization Algorithm for

Constraint-Coupled Optimization Problems. IEEE Control Systems Letters, 2020, 5(1):259-264.

[7] Webler C M, Zanchetta J P. Exponential stability for the coupled Klein–Gordon–Schrdinger

equations with locally distributed damping in unbounded domains. Asymptotic Analysis, 2021,

123(3-4):289-315. https://doi.org/10.3233/ASY-201634

[8] AFD Almeida, MM Cavalcanti, JP Zanchetta. Exponential stability for the coupled

Klein-Gordon-Schrdinger equations with locally distributed damping. Evolution Equations and

Control Theory, 2019, 8(4):847-865. https://doi.org/10.3934/eect.2019041

[9] AF Almeida, MM Cavalcanti, JP Zanchetta. Exponential decay for the coupled

Klein-Gordon-Schrödinger equations with locally distributed damping. Communications on

Pure & Applied Analysis, 2018, 17(5):2039-2061. https://doi.org/10.3934/cpaa.2018097

[10] Talaei B, Jagannathan S, Singler J. Output Feedback-Based Boundary Control of Uncertain

Coupled Semilinear Parabolic PDE Using Neurodynamic Programming. IEEE Transactions on

Neural Networks & Learning Systems, 2018, 29(4):1263-1274.

[11] Aguilar C S. Scheduling distributed clusters of parallel machines: primal-dual and LP-based

approximation algorithms. Computing reviews, 2018, 59(11):605-605.

[12] Irom K, Kazi A, Akter T. Improvised Priority based Round Robin CPU Scheduling.

International Journal of Computer Applications, 2018, 179(32):7-16.

https://doi.org/10.5120/ijca2018916722

[13] Sohrawordi M, Ali U, Uddin M P, et al. A Modified Round Robin Cpu Scheduling Algorithm

With Dynamic Time Quantum. International Journal of Advanced Research, 2019, 7(2):422-429.

https://doi.org/10.21474/IJAR01/8506

[14] Popovic M, Kordic B, Popovic M, et al. Online algorithms for scheduling transactions on

python software transactional memory. Serbian Journal of Electrical Engineering, 2019,

16(1):85-104. https://doi.org/10.2298/SJEE1901085P

[15] Qamhieh M, George L, Midonnet S. Stretching algorithm for global scheduling of real-time

DAG tasks. Real Time Systems, 2019, 55(1):32-62. https://doi.org/10.1007/s11241-018-9311-1

[16] Shetty S C. Machine Learning Approach to Select Optimal Task Scheduling Algorithm in

Cloud. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 2021,

12(6):2565-2580.

[17] Solayman H E. A Comparison of Scheduling parallel program tasks based on Java Applet.

International Journal of Advanced Trends in Computer Science and Engineering, 2020,

2(9):1394 – 1403.

[18] Paul T, Hossain R, Samsuddoha M. Improved Round Robin Scheduling Algorithm with

Progressive Time Quantum. International Journal of Computer Applications, 2019,

178(49):30-36. https://doi.org/10.5120/ijca2019919419

