
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2022.030208

ISSN 2790-0916 Vol. 3, Issue 2: 95-102

Copyright: © 2022 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

95

Performance Optimization Technology of Fault Tolerance

Mechanism in Distributed System Based on Neural

Network

Vemparty Velmurungan
*

Vellore Institute of Technology, India

*
corresponding author

Keywords: Neural Network, Distributed System, Fault Tolerance Mechanism, Data

Restoration

Abstract: In the era of big data, distributed systems(DS) have to deal with more and more

data, and the possibility of system hardware failure is higher and higher. Traditional disk

arrays can no longer meet the high reliability requirements of large-scale distributed

clusters. Data fault tolerance has become an important problem in DSs. In order to ensure

the reliability of data processing in DSs and continue to provide users with high-quality

services, the performance optimization of fault-tolerant mechanisms has become an

important research content in DSs. Aiming at the distributed core storage framework

proposed in this paper, the fault-tolerant mechanism of its client module and metadata

storage management module is designed and implemented, and the performance of the DS

is tested through the performance optimization experiment of fault-tolerant mechanism.

The experimental results of Prime-based and neural network-based data inpainting show

that the neural network-based data inpainting technology can reduce the network cost of

data inpainting. The experimental results of distributed computing delay based on radial

basis neural network algorithm, C.T. algorithm and Pedone algorithm show that the delay

time of RBF algorithm tends to converge with the increase of MRR.

1. Introduction

In order to improve the reliability of the DS in the process of data processing, it must adopt a

certain data fault tolerance technology. Data fault tolerance technology processes the original data

to generate redundancy, and places the data on different racks or nodes. These redundant data can

directly or indirectly generate the original data and solve the problem of data transmission or

storage. Loss problem, in order to ensure the stable operation of the system [1-2].

At present, many scholars have studied the fault-tolerant mechanism of DSs, and have achieved

Distributed Processing System

96

good results. For example, a DS designed by a scholar adopts the Spark fault-tolerant technology,

which is distributed in the system servers, and signals are continuously sent between the servers.

When a server fails and another server cannot receive the signal sent by the other party, it knows

that the other server has a problem, and automatically runs to the software switching function [3]. A

scholar uses the recovery of distributed snapshots. After a fault occurs, the machines in the DS need

to retrieve the state from the snapshots stored in the distributed file system. In order to reduce the

impact of recorded snapshots on normal execution, the system will provide many optimizations.,

and this goal is contradictory to fast recovery. The more obvious the optimization effect is, the

longer the corresponding recovery time may be [4]. Some studies have proposed to evaluate the

total amount of data sent by the DS from the data sender to the data receiver through the network

bandwidth cost measurement. Although it can reflect the network occupancy during data repair to a

certain extent, it only considers the total amount of data during data repair. The actual network

topology is not considered, and the data transmission in the distributed storage system may pass

through several layers of switches [5]. From this point of view, the fault-tolerant mechanisms of

DSs have their own characteristics and can repair DS failures.

This paper proposes the radial basis neural network algorithm model, and applies the algorithm

to the data restoration of DSs; then introduces two fault-tolerant technologies; then designs the

distributed core storage system framework, and tests the client module file upload and download

performance; finally, the fault-tolerant optimization experiment of DS performance is carried out,

which shows the superiority of neural network algorithm.

2. Related Algorithms and Technologies

2.1. Neural Network

The simplest radial basis neural network consists of three levels that act very differently. The

first layer is the input layer, which uses input nodes to connect the neural network and the external

environment, and the second layer is the hidden layer, which performs nonlinear transformations

from input points to hidden points. The third layer is the output layer, which is the sum of the linear

weights output by the hidden units [6]. Due to the short training time of RBF, the DS is repaired by

using RBF to meet the efficient data processing process of the system.

The RBF function generally uses a Gaussian function:




















 i

ivx
Gi 2

2

exp (1)

Among them, Gi
 is the output of the hidden unit, x is the input value, vi

 and  i
 are the

center and width of the ith basis function.

The output of the RBF neural network is:


k

j
jiji Gwy (2)

y
i
 is the RBF output value, and wij

 is the connection weight from the i-th layer to the j-th

layer.

Distributed Processing System

97

2.2. Fault-Tolerant Technology

(1) Fault-tolerant technology of database

Because the database needs to provide reliable data services, it also needs to provide fault

tolerance support. Database systems need to support complex transaction models, so the main

challenge of its fault tolerance mechanism is to ensure data consistency without affecting high

concurrency [7].

SiloR is a fault-tolerant database developed on the basis of the in-memory database Silo. Silo is a

well-known in-memory database that utilizes all hardware resources to provide high throughput.

SiloR provides complete and efficient fault tolerance support on Silo. The recovery mechanism of

SiloR has little impact on the speed of database processing transactions, and can ensure fast

recovery [8].

(2) Copy-based fault tolerance technology

It is also a common fault tolerance technology to improve the reliability of DSs by creating

replicas. A system with replicas can continue to provide services through replicas when the primary

node fails [9]. However, such systems generally also need to design a mechanism to ensure the

consistency between the replica node and the master node. The Replicated State Machine Model

(RSM) is one approach to this problem [10]. In the RSM model, the commands accepted by the

system are deterministic, and the primary server has the same initial state as the backup server.

During execution, the primary server accepts and executes commands, and it also sends commands

to the backup server. When the backup server completes the command from the primary server it

notifies the primary server. Only then will the master server consider the command complete. Under

this model, we can guarantee that the state of the replica server is consistent with that of the master

server [11-12].

3. Application of Fault Tolerance Mechanism of DS

3.1. Framework Design of Distributed Core Storage System

The core storage module itself is a distributed storage system. In order to achieve high storage

efficiency, the system adopts strategies. When it is necessary to locate file metadata or data, it is

necessary to obtain the corresponding locating rules from the rule server [13]. As can be seen from

Figure 1, the system includes a total of six modules.

MU MU

client

RS DS

delivery rulesget rules

metadata

manipulation

SU SU SU

file data

manipulation

Monitor

SU status

Monitor MU

status

administrator

set rules

Figure 1. Distributed core storage module framework

Distributed Processing System

98

Client module (client): Responsible for interacting with users, mainly initiating relevant

operation commands to the background core storage in the virtual disk, such as uploading files,

downloading files, etc.

Metadata storage management module (MU): responsible for managing the metadata

information of files and user information, such as file size, file name, file creation time and file path

or user, root directory and files contained in each user number [14].

Data storage management module (SU): responsible for storing data information of files.

Configuration management module (DS): responsible for transmitting rule information to RS,

monitoring the activity status information of SU and MU according to WD on each SU and MU,

and feeding back the obtained status information to Administrator; executing commands sent by

Administrator, such as Start SU or MU.

Administrator module (Administrator): manages the configuration and creation rules of the entire

system, mainly interacting with the DS module.

Rule Module (RS): Responsible for storing the rule information of the system, which is used to

locate the location of file metadata and the location of data.

3.2. Design and Implementation of Fault Tolerance Mechanism for Clients

In the design of the distributed core storage system structure, the client will use the data rule

table and metadata rule table whether uploading or downloading files [15]. Then, according to the

two rule tables, determine the SU or MU that finally interacts with the client. Because the rule table

will be reused, when the Client logs in, it will actively pull the rule table from the RS, and then

cache the two rule tables locally. When the rule table stored by the RS is inconsistent with the rule

table cached by the Client, a corresponding strategy must be adopted to solve the problem of

inconsistent rule tables. To solve this problem, the Lazy mechanism can be used [16-17].

A rule table that can tolerate client-side caching in a DS is out of date for a certain period of time.

However, this inconsistency will eventually be synchronized by the Lazy mechanism to ensure that

the rule table cached by the client is up-to-date, and the client can still provide services to ensure

consistency, and make the rules stored in the system consistent [18].

3.3. Design and Implementation of Fault Tolerance Mechanism of MU Module

The MU module (metadata storage) management module mainly stores the metadata information

of the file. In order to ensure that the metadata information of the file is never lost and the server

runs uninterrupted, dual-machine fault tolerance is mainly used [19]. In the MU management

module, the dual-system hot backup mode is adopted. The main reason is that the dual-machine hot

backup mode can not only meet the fault tolerance requirements of the system, but also is relatively

simple to implement. Dual-system hot backup fault tolerance is implemented in the master-slave

configuration management module of the MU. The master-slave configuration module is

responsible for the establishment and maintenance of the master-slave relationship between a pair

of MUs, as well as the master-slave switchover when a fault occurs [20-21].

4. DS Fault Tolerance Mechanism Performance Optimization Test

4.1. Upload and Download Stress Performance Evaluation Test

Test method: The load generator continuously initiates 100, 300, 800, 1000, 2000 connection

Distributed Processing System

99

requests to upload and download files, where the file size is 5M, and then use the nmon tool to

observe and record the write speed of the SU and the usage of the CPU.

Table 1. Upload file performance test results

Number of files 100 300 800 1000 2000

Occupied CPU

(%)
12.7 13.3 13.8 14.5 14.7

Write speed

(kb/s)
2034 3867 6525 7794 13451

According to Table 1, the increase in the number of uploaded files has little effect on the CPU

usage. This happens because the CPU does not need to be involved in the reading and writing

process of the underlying disk. And the write speed of the disk increases with the number of files.

According to these two performance parameters, the design of SU meets the requirements.

Table 2. Download file performance test results

Number of files 100 300 800 1000 2000

Occupied CPU

(%)
15.8 18.3 17.6 16.4 16.2

Read speed

(kb/s)
376 749 1233 1153 964

According to Table 1 and Table 2, the CPU occupied by the downloaded file is higher than the

CPU occupied by the uploaded file, because the user will use the computer's own data caching

mechanism when reading the file. CPU-intensive. The read speed of the disk increases first and then

decreases with the increase of the number of files, which is also due to the mechanism of data

caching.

4.2. Network Cost Optimization

In order to reduce data repair operations during client read operations, there is a periodic scanner

in the DS, which periodically scans the status of each data block and encoding block of each file.

Assuming that a disk fails, it is necessary to select the recipient node clockwise along the hash ring

and repair the lost data block or encoded block. Data repair not only consumes CPU resources, but

also consumes a lot of network bandwidth. Therefore, certain strategies need to be adopted to

reduce the network cost.

To compare the Prime-based data inpainting technique with the neural network-based data

inpainting technique, we simulated a large-scale distributed cluster. The cluster consists of 5 racks

with 8 nodes in each rack and 4 disks per node. First, one million objects are written into the

distributed cluster using data layout rules. The size of a single object can be used as an encoding

group, and the size of the encoding block in the encoding group is 1MB. Then, 10,000 objects are

selected as faulty objects, and each object randomly selects a coding block that is lost and needs to

be recovered. Finally, the objects are recovered with Prime repair technology and neural

network-based data repair technology, respectively.

The DS can be customized by the system administrator for the length of the coding stripe and the

length of the data stripe. Therefore, we compared four erasure coding data coding schemes and used

the average network cost of repairing a single object as the evaluation standard. The experimental

Distributed Processing System

100

results are shown in Figure 2 shown. In this simulated experimental environment, applying erasure

coding scheme 1, the data blocks and coding blocks will be distributed in different racks according

to the data layout algorithm, so the average network cost of Prime-based data repair and neural

network-based data repair is the same. Besides, in the case of erasure codes 2, 3, and 4, the average

network cost of neural network-based data inpainting is lower than that of Prime-based data

inpainting. It can be seen that the data repair algorithm based on neural network can significantly

reduce the network cost of data repair in complex network environment.

Figure 2. Comparison of average network cost based on Prime repair and neural network repair

4.3. Latency Performance Optimization

In the experiment, when evaluating the performance of the RBF algorithm, the C.T. algorithm

and the Pedone algorithm are selected as the reference algorithms. In addition, the experiment

introduces a message rescheduling mechanism (Message Reordering), which disrupts the order of

messages in the message queue received by the process according to a certain probability (MRR,

Message Reordering Rate).

Figure 3. Latency versus MRR

Distributed Processing System

101

Figure 3 shows the distributed computing delay time of the RBF algorithm, the C.T. algorithm

and the Pedone algorithm at different MRR values (the system load is fixed at 400/s). The test

results show that the MRR has basically no effect on the C.T. algorithm, but the RBF algorithm and

the The delay time of the Pedone algorithm increases with the increase of MRR, but the delay time

of the RBF algorithm will converge and will not exceed the C.T. algorithm, which is consistent with

the expected results.

5. Conclusion

In this paper, by comparing the data optimization results of DSs based on Prime and neural

network, as well as the optimization results of distributed computing delay time based on RBF

algorithm, C.T. algorithm and Pedone algorithm, it is found that neural network technology can

reduce the network cost of data repair and convergence. The distributed computing delay time

ensures the reliability of the DS in the data processing process, and verifies the effective effect of

the neural network technology on the fault-tolerant mechanism of the DS.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Mehalaine R, Boutekkouk F. A New Intelligent Biologically-Inspired Model for Fault Tolerance

in Distributed Embedded Systems. International Journal of Embedded and Real-Time

Communication Systems, 2020, 11(3):22-47.

[2] Kasu P, Hamandawana P, Chung T S. DLFT: Data and Layout Aware Fault Tolerance

Framework for Big Data Transfer Systems. IEEE Access, 2021, PP(99):1-1.

[3] Kada B, Kalla H. A Fault-Tolerant Scheduling Algorithm Based on Checkpointing and

Redundancy for Distributed Real-Time Systems. International journal of DSs and technologies,

2019, 10(3):58-75.

[4] Afshari A, Karrari M, Baghaee H R, et al. Distributed Fault-Tolerant Voltage/Frequency

Synchronization in Autonomous AC Microgrids. IEEE Transactions on Power Systems, 2020,

35(5):3774-3789.

[5] Saraswat B K, Suryavanshi R, Yadav D S. A Comparative Study Of Checkpointing Algorithms

For Dss. International Journal of Pure and Applied Mathematics, 2019, 118(20):1595-1603.

[6] Moraes M, Gradvohl A. Evaluating the impact of a coordinated checkpointing in distributed

data streams processing systems using discrete event simulation. Revista Brasileira de

Computação Aplicada, 2020, 12(2):16-27.

Distributed Processing System

102

[7] Bintoudi A, Zyglakis L, Tsolakis A C, et al. Hybrid multi-agent-based adaptive control scheme

for AC microgrids with increased fault-tolerance needs. IET Renewable Power Generation,

2020, 14(1):13-26.

[8] Ekwonwune E N, Ezeoha B U. Scalable Distributed File Sharing System: A Robust Strategy for

a Reliable Networked Environment in Tertiary Institutions. International Journal of

Communications, Network and System Sciences, 2019, 12(4):49-58.

[9] Youness H, Omar A, Moness M. An Optimized Weighted Average Makespan in Fault-Tolerant

Heterogeneous MPSoCs. IEEE Transactions on Parallel and DSs, 2021, PP(99):1-1.

[10] Jeong E, Jeong D, Ha S. Dataflow Model–based Software Synthesis Framework for Parallel

and Distributed Embedded Systems. ACM Transactions on Design Automation of Electronic

Systems, 2021, 26(5):1-38.

[11] Pashkov V N. Fault-Tolerance Distributed Control Plane for Software Defined Networks.

Modeling and Analysis of Information Systems, 2019, 26(1):101-121.

[12] Ali M, Bagchi S. Probabilistic normed load monitoring in large scale DSs using mobile agents.

Future Generation Computer Systems, 2019, 96(JUL.):148-167.

[13] Roque A, Jazdi N, Freitas E, et al. A Fault Modeling Based Runtime Diagnostic Mechanism

for Vehicular Distributed Control Systems. IEEE Transactions on Intelligent Transportation

Systems, 2021, PP(99):1-13.

[14] Rajabi A, Bobba R B. Resilience Against Data Manipulation in Distributed

Synchrophasor-Based Mode Estimation. IEEE Transactions on Smart Grid, 2021, PP(99):1-1.

[15] Alvarez I, Ballesteros A, Barranco M, et al. Fault Tolerance in Highly Reliable

Ethernet-Based Industrial Systems. Proceedings of the IEEE, 2019, 107(6):977-1010.

[16] Khaldi M, Rebbah M, Meftah B, et al. Fault tolerance for a scientific workflow system in a

Cloud computing environment. International Journal of Computers and Applications, 2019,

42(3):1-10.

[17] Singh J, Kaur K. Dynamic Fault Tolerance Job Allocation Mechanism to Conserve Resources

in Vehicular Cloud. International Journal Of Computer Sciences And Engineering, 2019,

7(5):538-547.

[18] Rosato A, Panella M, Araneo R, et al. A Neural Network Based Prediction System of

Distributed Generation for the Management of Microgrids. IEEE Transactions on Industry

Applications, 2019, PP(99):1-1.

[19] Rajkumar R, Sudhamani M V. Image Retrieval System using Residual Neural Network in a

Distributed Environment. International Journal of Recent Technology and Engineering, 2020,

8(6):2277-3878.

[20] Bui V H, Hussain A, Kim H M. Double Deep Q-Learning-Based Distributed Operation of

Battery Energy Storage System Considering Uncertainties. IEEE Transactions on Smart Grid,

2019, PP(99):1-1.

[21] Hashida S, Tamura K, Sakai T. Classifying Tweets using Convolutional Neural Networks with

Multi-Channel Distributed Representation. IAENG Internaitonal journal of computer science,

2019, 46(1):68-75.

