
Scholar Publishing Group 

International Journal of Multimedia Computing 

https://doi.org/10.38007/IJMC.2025.060108 

ISSN 2789-7168 Vol. 6, Issue 1: 81-92 

 

Copyright: © 2025 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License 
(CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited (https://creativecommons.org/licenses/by/4.0/). 

 

81 

 

Development and Function Extension Analysis of 

Computer Platform Based on JSP and JavaScript 

Jiaji Zhou 

College of Art and Design, Changchun Humanities and Sciences College, Changchun 

130000, Jilin, China 

Keywords: JavaScript platform development; Web application security 

detection; Vulnerability detection; Malicious code detection; Mixed attribute 

graph model 

Abstract: With the development of big data, cloud computing, and artificial 

intelligence technologies, web applications have become important carriers 

of human-computer interaction. However, their security threats continue to 

escalate, with attack types expanding from traditional SQL injection and 

cross site scripting (XSS) to new types of file free attacks, deserialization 

vulnerability exploitation, etc. The security of software supply chains is out 

of control, attack methods are diversified, and attack targets are shifting 

towards data trafficking and malicious code implantation, posing serious 

challenges to the security of individuals, enterprises, and critical 

infrastructure. This article is based on the development and functional 

extension analysis of computer platforms using JSP and JavaScript, focusing 

on two main threats: web vulnerabilities and web malicious code. Combining 

traditional program analysis and machine learning techniques, innovative 

detection methods are proposed: for traditional web vulnerabilities (such as 

XSS), a gray box fuzzy testing method based on reinforcement learning is 

proposed. Through static analysis to locate injection points, structured 

partitioning of attack payloads, and optimization of reinforcement learning 

models, the experimental detection rate reaches 93.75%, which is better than 

mainstream scanners; To address the new Java deserialization vulnerability, a 

hybrid attribute graph model was constructed and the exploitation chain was 

searched, achieving a detection rate of 80%; Targeting traditional file based 

malicious code (JavaScript), combining semantic analysis with BiLSTM 

model, generating semantic slices through program dependency graph and 

optimizing input with optimal accuracy; A hybrid method of dynamic 

monitoring, security sensitivity, and lightweight taint analysis was used to 

detect malicious code on the Java file free web shell, achieving a detection 

rate of 81.33%. The research aims to improve detection efficiency and 



International Journal of Multimedia Computing 

 

82 

 

accuracy, and respond to the evolving threats of network attacks. Future 

work will focus on the transferability of detection models, improvement of 

program analysis accuracy, establishment of standard test sets, and research 

on code obfuscation mitigation techniques. 

1. Introduction 

With the development of technologies such as big data, cloud computing, and 

artificial intelligence, web applications have penetrated into various fields of social 

life, from information websites to complex information systems, providing users with 

convenient services but also becoming the main target of attackers. The number and 

types of attacks targeting web applications are rapidly increasing, from traditional 

SQL injection and XSS to file free attacks, deserialization vulnerability exploitation, 

etc., posing serious challenges to personal privacy, enterprise data, and national 

critical information infrastructure security. The current web application security 

detection faces three major challenges: firstly, the extensive use of open source 

software makes it difficult to control software supply chain security, and 

vulnerabilities and malicious code are easily migrated along the supply chain; 

Secondly, the attack methods are constantly updated. Traditional attacks (such as SQL 

injection and XSS) have not been fully defended, and new types of attacks (such as 

file free attacks and ReDoS/ROP attacks) have intensified the pressure of protection; 

Thirdly, the target of attacks has shifted from disrupting availability to data trafficking 

and malicious code extortion, with an increase in hacker attacks driven by profit.This 

article focuses on the development and functional extension of computer platforms 

based on JSP and JavaScript, focusing on web vulnerability detection and malicious 

code detection. Combining traditional program analysis with new machine learning 

technologies, a series of innovative methods are proposed: for traditional web 

vulnerabilities (such as cross site scripting vulnerabilities), a gray box fuzzy testing 

method based on reinforcement learning is proposed. Through static analysis to 

identify injection points and structured partitioning of attack payloads, reinforcement 

learning is used to generate/mutate payloads. The experimental detection rate reaches 

93.75%, which is better than other well-known scanners; Build a hybrid attribute 

graph model for new web vulnerabilities (such as Java deserialization vulnerabilities), 

generate/merge graphs and search for exploitation chain detection, with an 

experimental detection rate of 80%; A detection method combining semantic analysis 

and BiLSTM is proposed for traditional file based web malicious code (such as 

JavaScript). The method generates semantic slices through program dependency 

graphs and converts them into model inputs, with higher accuracy than other machine 

learning models and tools; Design a hybrid method of dynamic monitoring and static 

feature analysis for file free web malicious code (such as Java file free web shell), 

using security sensitive methods screening, probe insertion, and lightweight taint 

analysis to determine whether suspicious classes are web shells. The experimental 

detection rate is 81.33%.In summary, the innovative method proposed in this article 

aims to improve the accuracy and efficiency of web application security detection, 

respond to evolving network attack threats, and provide support for ensuring web 

application security. 

 

 



International Journal of Multimedia Computing 

 

83 

 

2. Correlation theory 

In the field of computer platform development and feature extension based on JSP 

and JavaScript, multiple studies have been conducted from the dimensions of security, 

quality improvement, and functional innovation, forming a multidimensional 

technical optimization framework. In terms of security detection, JSHint effectively 

enhances its ability to detect malicious code by revealing API usage and analyzing 

malicious JavaScript behavior; Dora and others conducted a security centered 

evaluation of the web application code generated by LLM, revealing its hidden risks 

(such as potential vulnerabilities), but the sample size may affect the 

comprehensiveness of the conclusions. In terms of program quality optimization, 

Antal et al. proposed a call metric method based on mixed call graph to enhance the 

accuracy of bug prediction in JavaScript programs; Francesco's "JavaScript Design 

Patterns" summarizes design patterns from a methodological perspective, helping to 

improve code maintainability and extensibility, but its effectiveness depends on the 

actual application capabilities of developers. At the level of functional extension, 

Boostlet-js implements a web image processing plugin through JavaScript injection, 

which extends the image processing capabilities of the web, but may face security or 

compatibility challenges. In terms of system optimization, the JavaScript engine 

verification method proposed by the Korean patent aims to reduce detection errors in 

personal information monitoring systems and lower misjudgment rates through engine 

optimization, but the technical implementation complexity is relatively high. In 

addition, MetaPix, as a data centric AI development platform, focuses on efficient 

management and utilization of unstructured computer vision data, integrating data 

management and AI development processes to improve processing efficiency. 

However, its performance depends on the quality and diversity of input data. These 

studies have promoted platform development and feature extension based on JSP and 

JavaScript from different dimensions, balancing security, quality, and functionality 

requirements. However, they also have limitations in technology implementation, data 

dependency, or scenario adaptation. 

3. Research method 

3.1. Overview of Program Analysis and Web Security Detection Technologies 

In the development and functional extension analysis of computer platforms based 

on JSP and JavaScript, program analysis technology, web vulnerability detection 

technology, and web malicious code detection technology are key components to 

ensure platform security. As a foundation, program analysis technology covers static 

analysis, dynamic analysis, and machine learning based analysis methods. Static 

analysis extracts program states through techniques such as data flow, while dynamic 

analysis records program execution paths and behaviors to obtain features. Machine 

learning based analysis technology can solve problems such as low path coverage, 

improve analysis accuracy and efficiency. Web vulnerability detection technology can 

be divided into static analysis, dynamic analysis, and machine learning based 

detection according to different analysis methods. Static analysis discovers 

vulnerabilities through lexical, syntactic, and other analyses during the development 

phase, while dynamic analysis detects vulnerabilities through runtime analysis during 

the testing phase. Machine learning detection improves detection accuracy and 

completeness through data preprocessing, feature extraction, and model selection. 



International Journal of Multimedia Computing 

 

84 

 

Web malicious code detection technology mainly targets web shell and JavaScript 

malicious code, with feature extraction covering multiple dimensions such as lexical, 

syntactic, semantic, statistical, and abstract features. Static analysis detects malicious 

code by comparing static features with discriminative conditions, while dynamic 

analysis combines behavior judgment to enhance detection capabilities. Machine 

learning based detection methods automatically extract high-dimensional features and 

combine static and dynamic analysis to achieve effective identification of malicious 

code. These technologies together provide a solid security guarantee for the 

development and functional extension of computer platforms based on JSP and 

JavaScript. 

3.2. Research on Java deserialization vulnerability detection method 

The Java deserialization vulnerability, as a serious threat to web application 

security, has received much attention in recent years. The Java serialization 

mechanism can convert objects into byte sequences to optimize inter process 

communication, improve system performance, or save models (such as machine 

learning models), while deserialization is its inverse process. However, when dealing 

with untrusted data, the deserialization mechanism may be maliciously exploited, 

leading to serious threats such as denial of service attacks, remote code execution, or 

malicious code implantation, with a huge potential impact range.The severity of this 

vulnerability was widely recognized after the Fox Glove security team first exploited 

the Apache Commons Collections deserialization vulnerability to launch a remote 

code execution attack in 2015. It was listed as one of the top 10 most serious web 

security risks in 2017 due to its impact on popular web containers such as WebLogic 

and DB2. According to statistics, the National Vulnerability Database (NVD) 

recorded a total of 126 related vulnerabilities from 2015 to 2022, and the number has 

been on the rise in the past four years. Most of them exist in third-party open source 

software such as fastjson, and may spread to downstream web applications through 

the software supply chain.The existing detection methods have made some progress: 

in 2018, Haken proposed the first detection tool, Gadget Inspector, which assists 

security personnel in detecting vulnerabilities by searching and exploiting chains. 

However, due to the rough analysis of method calls, there are many false positives; In 

2020, Rasheed et al. improved their ability to analyze large programs by combining 

pointer analysis and fuzz testing; In 2021, Lai et al. proposed a detection method that 

combines static and dynamic analysis to further optimize detection efficiency. 

However, existing methods still have limitations in terms of semantic analysis depth 

and precise mining using chains.Detecting Java deserialization vulnerabilities faces 

two core challenges: firstly, the lack of appropriate code abstraction representation, 

such as the inheritance, rewriting, and calling relationships of traditional abstract 

syntax trees (AST), control flow graphs (CFG), and other non integrated classes, 

making it difficult to achieve accurate analysis; The second challenge is the difficulty 

of building a utilization chain, which requires quickly locating potential paths among 

tens of thousands of classes in the target program and Java Runtime Environment 

(JRE).In response to the above challenges, this article proposes a hybrid attribute 

graph model that integrates features such as class inheritance and method invocation 

related to deserialization. By using a bidirectional construction algorithm to merge 

and search the hybrid attribute graph, it effectively detects Java deserialization 

vulnerabilities. This method aims to improve the accuracy and efficiency of detection, 

providing technical support for addressing such high-risk vulnerabilities. 



International Journal of Multimedia Computing 

 

85 

 

3.3. Analysis of Cross site Script Vulnerability Principle 

Cross site scripting vulnerability is a common security threat in web applications, 

which essentially involves attackers injecting malicious code into trusted websites. 

When a user visits the website, the embedded malicious code automatically executes 

(difficult for the user to detect), thereby stealing sensitive information (such as user 

cookies) or spreading malicious content. According to the triggering method of 

malicious code, XSS vulnerabilities can be divided into three categories: reflective 

XSS induces users to click by constructing links containing malicious scripts, and the 

browser triggers the attack after executing the script; Storage based XSS stores 

malicious data on the server side (such as a database), and when other users browse 

related content, the stored malicious data is rendered onto the page and executed; 

DOM type XSS utilizes the dynamic modification feature of the Document Object 

Model (DOM), allowing malicious code to modify page content or style on the client 

side and execute it. Reinforcement learning is a machine learning method that studies 

agents maximizing long-term rewards through interaction in complex environments. 

Its core consists of agents and the environment: when the environment is in a certain 

state, the agent selects an action based on the current state, and after the action is 

executed, the environment transitions to the next state and returns a reward. The goal 

of an intelligent agent is to learn the optimal strategy through continuous interaction, 

which can be formalized as a Markov Decision Process (MDP) described by a 

quadruple of state space, action space, reward function, and state transition function. 

The decision effect is quantified through the state value function and state action 

value function, and the optimal strategy is ultimately solved to maximize cumulative 

rewards. 

4. Results and discussion 

4.1. The evolution and challenges of Java deserialization vulnerability detection 

technology 

The Java deserialization vulnerability, as a serious threat to web application 

security, has received widespread attention in recent years. The serialization 

mechanism of Java can convert objects into byte sequences to optimize inter process 

communication, improve system performance, or save models (such as machine 

learning models), while deserialization is its inverse process. However, when 

handling untrusted data, the deserialization mechanism may be maliciously exploited, 

leading to serious threats such as denial of service attacks, remote code execution, or 

malicious code implantation. The potential impact of such vulnerabilities is enormous. 

As early as 2006, researchers raised concerns about potential Java deserialization 

vulnerabilities, but it wasn't until 2015 when the Fox Glove security team first 

exploited the Apache Commons Collections deserialization vulnerability to launch a 

remote code execution attack that its severity was widely recognized. This 

vulnerability was listed as one of the most serious web security risks in the 2017 

OWASP Top 10 due to its impact on popular web containers such as WebLogic and 

DB2. According to statistics, the National Vulnerability Database (NVD) recorded a 

total of 126 Java deserialization vulnerabilities from 2015 to 2022, with the number 

showing an upward trend in the past four years, and most of them exist in third-party 

open source software (such as fastjson), which may spread to downstream web 

applications through the software supply chain. The existing detection methods have 



International Journal of Multimedia Computing 

 

86 

 

made some progress. In 2018, Haken proposed the first detection tool, Gadget 

Inspector, which assists security personnel in detecting vulnerabilities by searching 

and exploiting chains. However, due to the rough method call analysis, there are many 

false positives; In 2020, Rasheed et al. improved their ability to analyze large 

programs by combining pointer analysis and fuzz testing; In the same year, Du 

Xiaoyu and others proposed a detection method based on bytecode search, using taint 

analysis and symbolic execution techniques to mine call chains; In 2021, Lai et al. 

proposed a detection method that combines static and dynamic analysis; In 2022, Wu 

Yongxing et al. proposed a chain mining method based on mixed information flow 

analysis. However, existing methods still have limitations in terms of semantic 

analysis depth and precise mining using chains. There are two major challenges in 

detecting Java deserialization vulnerabilities: firstly, the lack of appropriate code 

abstraction representation. Traditional abstract syntax trees, control flow graphs, and 

other non integrated class inheritance, rewriting, and call relationships make it 

difficult to achieve accurate analysis; The second challenge is the difficulty of 

building a utilization chain, which requires quickly locating potential paths among 

tens of thousands of classes in the target program and Java Runtime Environment 

(JRE). In response to the above challenges, this article proposes a hybrid attribute 

graph model that integrates features such as class inheritance and method invocation 

related to deserialization. By using a bidirectional construction algorithm to merge 

and search the hybrid attribute graph, it effectively detects Java deserialization 

vulnerabilities. 

4.2. JavaScript Malicious Code Detection Methods 

JavaScript, as a widely used lightweight scripting language in web development, 

has become an important target for malicious code attacks due to its dynamic nature. 

It can launch various threats such as cross site request forgery, driver download 

attacks, and distributed denial of service attacks. Traditional detection methods face 

challenges due to attackers using techniques such as random obfuscation, encoding 

obfuscation, data obfuscation, and logic obfuscation - these techniques hide malicious 

intent by modifying variable names, inserting irrelevant logic, recombining strings, 

etc., leading to the failure of tools based on keywords or static analysis. To this end, 

researchers propose a deep learning based detection method that treats programs as 

special natural language and utilizes models such as LSTM, Graph Convolutional 

Networks (GCN), and attention mechanisms to capture code semantics; However, the 

flexibility of program syntax is high, and the dependency relationships between 

statements do not depend on distance. Simple traversal of abstract syntax trees (AST) 

or control flow graphs (CFG) is difficult to effectively extract semantics. This article 

proposes a program slicing method based on semantic analysis: combining control 

flow and data flow dependencies to construct a program dependency graph (PDG), 

restoring code semantics through obfuscation processing (such as JSDetox tool), and 

then generating slices that preserve rich semantics based on key functions (string 

operations, encoding conversion, URL redirection, and special behaviors, etc.), and 

converting them into vector input bidirectional long short-term memory networks 

(BiLSTM). This model captures long-term dependencies between sentences through 

forward and backward propagation. Experiments have shown that its detection 

performance is superior to other machine learning models (such as Naive Bayes, 

SVM, Random Forest) and traditional tools (such as JaSt, ClamAV). The accuracy on 

the de obfuscation dataset is 97.71%, and the F1 score is 98.29%, effectively 



International Journal of Multimedia Computing 

 

87 

 

addressing the interference of obfuscation techniques on detection 

4.3. Comparative analysis of evaluation effects 

In the development and functional extension analysis of computer platforms based 

on JSP and JavaScript, in order to systematically evaluate the effectiveness of 

JShellDetector, this article records in detail the results of two key steps: suspicious 

class dynamic recognition and webshell detection. The number of suspicious class 

recognitions is used to evaluate the performance of the method probe and determine 

whether it can accurately capture the triggering of sensitive features by the webshell; 

The number of detected webshells is used to evaluate the detection performance of 

webshells based on taint analysis, and is also the evaluation criterion for the overall 

performance of JShellDetector. Table 1 shows the specific performance of 

JShellDetector on various test cases, where step 1 identifies suspicious classes and 

step 2 detects webshells. As shown in Table 1 

Table 1. Fileless webshell detection results of JShellDetector 

ShellDetector Classification 

Type 

Step 1 (Identify Suspicious 

Classes) 

Step 2 (Webshell 

Detection) 

Component Memory Shell 60 
54(42 successful, 12 

failed) 

Web y/t Listener-based Type 60 
55 (41 successful, 14 

failed) 

Servlet Type 60 

56 (48 successful, 8 

failed) 

 

Interceptor Type Based on 

Spring Controller Framework 
60 

51 (35 successful, 16 

failed) 

Total 300 

244(162 successful, 

78 failed) 

 

The experimental results showed that JShellDetector successfully captured all 

suspicious classes in 300 test cases, with a detection rate of 100%, proving the 

effectiveness of the method probe based screening method and significantly reducing 

the detection range. In the webshell detection phase, a total of 244 test cases were 

detected, with a detection rate of 81.33%. To explore the reasons for detection failure, 

this article conducted manual analysis on failed cases and found that the main reasons 

for failure were string encryption and dynamic code generation technology. A test 

case fragment showing detection failure due to string encryption was presented, in 

which the attacker encoded the code fragment implementing malicious logic in 

Base64 and stored it in a string. The webshell was remotely connected and re decoded 

the string into a Java class, and the malicious command was executed in the parsed 

Java class, thus bypassing detection. In summary, JShellDetector successfully 

captured all test cases that triggered security sensitive methods, extracted trigger 

classes from the JVM as bytecode files, and detected 81.33% of malicious behavior 

through taint analysis, demonstrating its effectiveness in detecting Java fileless 

webshells. At present, research on Java fileless webshells is still in its infancy, and 

Copagent and CacheShell are two open-source detection tools. Copagent filters 

suspicious classes through package name, class name, interface name, and comments, 



International Journal of Multimedia Computing 

 

88 

 

using three built-in rules; Memory Shell enhances its protection against file free 

webshell attacks and method call analysis based on this foundation. 

 

Figure 1. Detection Rates of Different Types of Java Fileless Webshells 

However, as shown in Table 2, the performance of both Memory Shell and 

Copagent is inferior to JShellDetector, with detection rates of 63.67% and 54%, 

respectively. JShellDetector has a detection rate of 81.33%, especially in Spring based 

webshells, where its detection rates are 40% and 20.83% higher, respectively. 

Copagent is also unable to detect interceptor type webshells. The superiority of 

JShellDetector lies in its behavior based detection method, which, unlike blacklist 

based mechanisms, can detect malicious behavior that does not inherit dangerous 

parent classes or implement specific interfaces. In terms of system resource 

consumption, JShellDetector adopts offline analysis and deployment methods to 

detect and unload analysis tasks. It communicates through message queues, and the 

additional memory consumption does not exceed 5% of the web server capacity. This 

study proposes a lightweight, hybrid analysis based detection method to address the 

issue of maintaining the persistence of web attacks using Java fileless webshells. By 

monitoring security sensitive method triggers to narrow down the detection range, the 

trigger class is extracted and converted into a bytecode file, and then lightweight taint 

analysis is applied to determine whether the suspicious class is a webshell. The 

experimental results show that this method detected 81.33% of malicious samples, 

which is about 18% higher than existing tools. 

5. Conclusion 

In recent years, with the development of technologies such as cloud computing, big 

data, and artificial intelligence, web application functions have become increasingly 

complex. However, security risks have intensified, especially with the prosperity of 

open source communities leading to vulnerabilities and malicious code spreading 

through software supply chains, causing serious losses. In response to the expansion 

of web application attack types from traditional SQL injection and XSS to file free 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Web Component-Based Spring Framework-Based Overall Detection Rate

JShellDetector Copagent MemoryShell



International Journal of Multimedia Computing 

 

89 

 

attacks, deserialization vulnerability exploitation, etc., traditional defenses are 

insufficient and new types of attacks exacerbate the pressure of protection. The attack 

targets have shifted to data trafficking, extortion, etc. This article focuses on web 

vulnerability and malicious code detection, combining traditional program analysis 

and machine learning methods to propose four innovative methods: the grey box 

fuzzy testing method based on reinforcement learning is applied to cross site script 

vulnerability detection, identifying potential injection points and structured partition 

attack payloads through static analysis, and using reinforcement learning models to 

generate and mutate attack payloads. The experiment shows that the vulnerability 

detection rate in the test samples reaches 93.75%, significantly better than other well-

known vulnerability scanners; A mixed attribute graph model is proposed for 

detecting Java deserialization vulnerabilities. By constructing a mixed attribute graph 

with features such as deserialization related class inheritance and method invocation, 

and searching for exploitation chains on the graph, the experimental detection rate 

reaches 80%; A method based on semantic analysis and BiLSTM model is proposed 

for traditional file based web malicious code detection. By analyzing the program 

dependency graph to generate semantic slices and converting the slices into deep 

learning model inputs, the experimental accuracy is superior to other machine 

learning models and detection tools; A hybrid method of dynamic monitoring and 

static feature analysis is designed for detecting malicious code on the fileless web. 

Through screening security sensitive methods, inserting method probes, and 

lightweight taint analysis techniques, the suspicious class is determined to be a web 

shell, with an experimental detection rate of 81.33%. In the future, it is necessary to 

improve the transferability of detection models, the universality of vulnerability 

methods (such as unified intermediate representation), enhance the accuracy of 

program analysis (develop tools for specific problems), establish standard test datasets, 

and study anti obfuscation techniques to strengthen the robustness of malicious code 

detection. 

References 

[1] Chen, X. (2025). Research on the Application of Multilingual Natural Language 

Processing Technology in Smart Home Systems. Journal of Computer, Signal, 

and System Research, 2(5), 8-14. 

[2] Hui, X. (2025). Research on Improving the Matching Efficiency between Cancer 

Patients and Clinical Trials Based on Machine Learning Algorithms. Journal of 

Medicine and Life Sciences, 1(3), 74-80. 

[3] Pan Y. Research on Cloud Storage Data Access Control Based on the CP-ABE 

Algorithm[J]. Pinnacle Academic Press Proceedings Series, 2025, 2: 122-129. 

[4] Shen, D. (2025). AI-Driven Clinical Decision Support Optimizes Treatment 

Accuracy for Mental Illness. Journal of Medicine and Life Sciences, 1(3), 81-87. 

[5] Yan J. Analysis and Application of Spark Fast Data Recommendation Algorithm 

Based on Hadoop Platform[C]//2025 Asia-Europe Conference on Cybersecurity, 

Internet of Things and Soft Computing (CITSC). IEEE, 2025: 872-876. 

[6] Huang J. Digital Technologies Enabling Rural Revitalization: The Practice of AI 

and BIM in the Adaptive Reuse of Historic Buildings[J]. International Journal of 

Architectural Engineering and Design, 2025, 2(1): 1-8. 

[7] Jiang Y. Research on the Optimization of Digital Object System by Integrating 

Metadata Standard and Machine Learning Algorithm[J]. Procedia Computer 

Science, 2025, 262: 849-858. 



International Journal of Multimedia Computing 

 

90 

 

[8] An C. Research on High Frequency Financial Transaction Data Modeling and 

Cloud Computing Implementation Based on SSA-GA-BP Model[J]. Procedia 

Computer Science, 2025, 262: 859-867. 

[9] Zhang M. Design of Object Segmentation and Feature Extraction Based On Deep 

Learning for AFM Image Processing and Analysis System[J]. Procedia 

Computer Science, 2025, 262: 982-991. 

[10] Lai L. Research and Design of Data Security Risk Assessment Model Based on 

Fusion of Deep Learning and Analytic Hierarchy Process (AHP)[J]. Procedia 

Computer Science, 2025, 262: 747-756. 

[11] Cai Y. Design and Implementation of a Cross Platform i0s Application 

Development Framework Based on YAI Configuration Files[J]. Procedia 

Computer Science, 2025, 262: 939-947. 

[12] Wei X. Research on Preprocessing Techniques for Software Defect Prediction 

Dataset Based on Hybrid Category Balance and Synthetic Sampling Algorithm[J]. 

Procedia Computer Science, 2025, 262: 840-848. 

[13] Wang C. Research on Modeling and Forecasting High-Frequency Financial 

Data Based on Histogram Time Series[J]. Procedia Computer Science, 2025, 262: 

894-900. 

[14] Pan H. Design and Implementation of a Cloud Computing Privacy-Preserving 

Machine Learning Model for Multi-Key Fully Homomorphic Encryption[J]. 

Procedia Computer Science, 2025, 262: 887-893. 

[15] Zhang Y. Research on the Application and Optimization of Multi Dimensional 

Data Model Based on Kylin in Enterprise Technology 

Management[C]//International Conference on Innovative Computing. Springer, 

Singapore, 2025: 234-241. 

[16] Hao, Linfeng. "Research on Automatic Driving Road Object Detection 

Algorithm Integrating Multi Scale Detection and Boundary Box Regression 

Optimization." In 2025 4th International Conference on Distributed Computing 

and Electrical Circuits and Electronics (ICDCECE), pp. 1-6. IEEE, 2025. 

[17] Tu, Xinran. "Feature Selection and Classification of Electronic Product Fault 

Short Text by Integrating TF-IDF and Wor D2vec." In 2025 4th International 

Conference on Distributed Computing and Electrical Circuits and Electronics 

(ICDCECE), pp. 1-6. IEEE, 2025. 

[18] Jiang, Yixian. "Research on Random Sampling Data Diffusion Technique in the 

Construction of Digital Object System Test Dataset." In 2025 4th International 

Conference on Distributed Computing and Electrical Circuits and Electronics 

(ICDCECE), pp. 1-6. IEEE, 2025. 

[19] Fu, Yilin. "Design and Empirical Analysis of Financial Quantitative Trading 

Model based on VMD-DCNN-SGRU Architecture and Integrated System." In 

2025 4th International Conference on Distributed Computing and Electrical 

Circuits and Electronics (ICDCECE), pp. 1-7. IEEE, 2025. 

[20] Zhou, Yixin. "Design and Implementation of Online Log Anomaly Detection 

Model based on Text CM and Hierarchical Attention Mechanism." In 2025 4th 

International Conference on Distributed Computing and Electrical Circuits and 

Electronics (ICDCECE), pp. 1-6. IEEE, 2025. 

[21] Yuan S. Design and Optimization of Network Security Situation Awareness 

Algorithm for Generative Adversarial Networks Targeting Attack Data and 

Traffic [C]//2025 4th International Conference on Distributed Computing and 

Electrical Circuits and Electronics (ICDCECE). IEEE, 2025: 1-6. 



International Journal of Multimedia Computing 

 

91 

 

[22] Guo Y. Research on Investment Bank Risk Monitoring and Early Warning Model 

Combining Factor Analysis and Artificial Neural Network[J]. Procedia 

Computer Science, 2025, 262: 878-886. 

[23] Cui N. Research and Application of Traffic Simulation Optimization Algorithm 

Based on Improved Road Network Topology Structure[C]//The International 

Conference on Cyber Security Intelligence and Analytics. Springer, Cham, 2025: 

156-163. 

[24] Yang D, Liu X. Collaborative Algorithm for User Trust and Data Security Based 

on Blockchain and Machine Learning[J]. Procedia Computer Science, 2025, 262: 

757-765. 

[25] Zhang X. Optimization and Implementation of Time Series Dimensionality 

Reduction Anti-fraud Model Integrating PCA and LSTM under the Federated 

Learning Framework[J]. Procedia Computer Science, 2025, 262: 992-1001. 

[26] Huang, Jiangnan. "Online Platform user Behavior Prediction and Decision 

Optimization based on Deep Reinforcement Learning." In 2025 4th International 

Conference on Distributed Computing and Electrical Circuits and Electronics 

(ICDCECE), pp. 1-6. IEEE, 2025. 

[27] Chen, H., Yang, Y., & Shao, C. (2021). Multi-task learning for data-efficient 

spatiotemporal modeling of tool surface progression in ultrasonic metal welding. 

Journal of Manufacturing Systems, 58, 306-315. 

[28] Chen, H., Wang, Z., & Han, A. (2024). Guiding Ultrasound Breast Tumor 

Classification with Human-Specified Regions of Interest: A Differentiable Class 

Activation Map Approach. In 2024 IEEE Ultrasonics, Ferroelectrics, and 

Frequency Control Joint Symposium (UFFC-JS) (pp. 1-4). IEEE. 

[29] Varatharajah, Y., Chen, H., Trotter, A., & Iyer, R. K. (2020). A Dynamic 

Human-in-the-loop Recommender System for Evidence-based Clinical Staging of 

COVID-19. In HealthRecSys@ RecSys (pp. 21-22). 

[30] Chen, H., Zuo, J., Zhu, Y., Kabir, M. R., & Han, A. (2024). Polar-Space 

Frequency-Domain Filtering for Improved Pulse-echo Speed of Sound Imaging 

with Convex Probes. In 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency 

Control Joint Symposium (UFFC-JS) (pp. 1-4). IEEE. 

[31] Wei Z. Construction of Supply Chain Finance Game Model Based on Blockchain 

Technology and Nash Equilibrium Analysis[J]. Procedia Computer Science, 

2025, 262: 901-908. 

[32] Yang, D., & Liu, X. (2025). Research on Large-Scale Data Processing and 

Dynamic Content Optimization Algorithm Based On Reinforcement Learning. 

Procedia Computer Science, 261, 458-466. 

[33] Ma, Zhuoer. "Research and Development of Financial Contract Text 

Information Extraction System based on M-BiLSTM and Our-M Models." In 2025 

4th International Conference on Distributed Computing and Electrical Circuits 

and Electronics (ICDCECE), pp. 1-7. IEEE, 2025. 

[34] Chen, H., Zhu, Y., Zuo, J., Kabir, M. R., & Han, A. (2024). TranSpeed: 

Transformer-based Generative Adversarial Network for Speed-of-sound 

Reconstruction in Pulse-echo Mode. In 2024 IEEE Ultrasonics, Ferroelectrics, 

and Frequency Control Joint Symposium (UFFC-JS) (pp. 1-4). IEEE. 

[35] Chen A. Research on Intelligent Code Search Technology Based on Deep 

Learning[J]. Pinnacle Academic Press Proceedings Series, 2025, 2: 137-143. 

[36] Pan Y. Research on the Design of a Real-Time E-Commerce Recommendation 

System Based on Spark in the Context of Big Data[C]//2025 IEEE International 



International Journal of Multimedia Computing 

 

92 

 

Conference on Electronics, Energy Systems and Power Engineering (EESPE). 

IEEE, 2025: 1028-1033. 

[37] Xiu L. Research on the Design of Modern Distance Education System Based on 

Agent Technology[J]. Pinnacle Academic Press Proceedings Series, 2025, 2: 

160-169. 

[38] Yan J. Research on Application of Big Data Mining and Analysis in Image 

Processing[J]. Pinnacle Academic Press Proceedings Series, 2025, 2: 130-136. 

[39] Xiu L. Analyses of Online Learning Behaviour Based on Linear Regression 

Algorithm[C]//2025 IEEE International Conference on Electronics, Energy 

Systems and Power Engineering (EESPE). IEEE, 2025: 1333-1338. 

[40] Ren B. Research Progress of Content Generation Model Based on EEG 

Signals[J]. Journal of Computer, Signal, and System Research, 2025, 2(4): 97-

103. 

[41] Liu Y. The Impact of Financial Data Automation on the Improvement of Internal 

Control Quality in Enterprises[J]. European Journal of Business, Economics & 

Management, 2025, 1(2): 25-31. 

[42] Hua X. Optimizing Game Conversion Rates and Market Response Strategies 

Based on Data Analysis[J]. European Journal of AI, Computing & Informatics, 

2025, 1(2): 37-43. 

[43] Zhou Y. Research on the Innovative Application of Fintech and AI in Energy 

Investment[J]. European Journal of Business, Economics & Management, 2025, 

1(2): 76-82. 

[44] Huang J. Resource Demand Prediction and Optimization Based on Time Series 

Analysis in Cloud Computing Platform[J]. Journal of Computer, Signal, and 

System Research, 2025, 2(5): 1-7. 

[45] Sheng C. Research on AI-Driven Financial Audit Efficiency Improvement and 

Financial Report Accuracy[J]. European Journal of Business, Economics & 

Management, 2025, 1(2): 55-61. 

[46] Zhang Q. Research on AI-Driven Advertising Optimization and Automated 

Decision System[J]. European Journal of Business, Economics & Management, 

2025, 1(2): 62-68. 

[47] Xu D. Design and Implementation of AI-Based Multi-Modal Video Content 

Processing[J]. European Journal of AI, Computing & Informatics, 2025, 1(2): 

44-50. 

[48] Li W. Audit Automation Process and Realization Path Analysis Based on 

Financial Technology[J]. European Journal of Business, Economics & 

Management, 2025, 1(2): 69-75. 

[49] Liu X. The Role of Generative AI in the Evolution of Digital Advertising 

Products[J]. Journal of Media, Journalism & Communication Studies, 2025, 1(1): 

48-55. 

[50] Liu F. Research on Supply Chain Integration and Cost Optimization Strategies 

for Cross-Border E-Commerce Platforms[J]. European Journal of Business, 

Economics & Management, 2025, 1(2): 83-89. 


