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Abstract: This paper addresses the low diagnostic accuracy of dissolved gas analysis (DGA) 

in transformer faults by proposing an improved honey pot algorithm (IHBA) to optimize 

the deep mixed kernel extreme learning machine (DHKELM). First, the dissolved gas data 

in transformer oil is preprocessed to reduce the discrepancies in the magnitude of fault data. 

Kernel Principal Component Analysis (KPCA) is then applied to reduce dimensionality 

and extract effective features, thus decreasing the correlation among the data.Next, 

traditional honey pot algorithm (HBA) is improved by introducing Cubic chaotic mapping, 

random value perturbation strategies, elite tangent search, and differential mutation 

strategies. The performance of IHBA is tested using three typical benchmark functions, 

demonstrating that IHBA possesses stronger stability and optimization capabilities. IHBA 

is then utilized to optimize the parameters of DHKELM, establishing the IHBA-DHKELM 

model for transformer fault diagnosis. Finally, the features extracted via KPCA are used as 

the input set for the model and compared with various transformer fault diagnosis models. 

Simulation results indicate that IHBA-DHKELM achieves higher diagnostic accuracy for 

transformer faults. 

1 Introduction 

In modern power systems, transformers are crucial equipment, and their operational stability is 

directly related to the safety of the entire power grid. However, due to long-term operation and 

complex working environments, transformers may experience various faults. If these faults are not 

detected and diagnosed in a timely manner, they could lead to significant economic losses and 

safety risks. Therefore, developing an efficient and accurate method for transformer fault diagnosis 

holds great practical significance
[1]

. 

When a transformer experiences a fault or potential hazard, the proportions of gases dissolved in 
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its insulating oil (H2, CH4, C2H6, C2H4, C2H2) change. These variations have a nonlinear 

relationship with the types of transformer faults. Although many transformer fault diagnosis 

methods exist, Dissolved Gas Analysis (DGA) remains the most mainstream approach. Current 

transformer DGA fault diagnosis methods can be divided into traditional methods and artificial 

intelligence-based methods. Traditional methods include the Rogers Ratio Method
[3]

, the IEC 

Three-Ratio Method
[4]

, and the Duval Triangle Method
[5]

. These methods are simple and reliable, 

and have been widely used in fault diagnosis. However, as the number of fault types, data 

dimensions, and noise increase, the accuracy of traditional methods tends to decrease.With 

technological advancement, artificial intelligence (AI) methods have become increasingly popular. 

Bayesian networks
[6]

, fuzzy logic
[7]

, and machine learning
[8,9]

 approaches are being applied more 

frequently in transformer fault diagnosis. These AI methods can improve diagnostic accuracy 

compared to traditional techniques. For example, literature [10] applied a BP neural network for 

transformer fault diagnosis, but the method suffers from slow convergence and a tendency to get 

stuck in local optima, requiring constant model adjustments in complex situations. Literature [11] 

utilized the Extreme Learning Machine (ELM) for engine fault diagnosis. While ELM offers fast 

learning speed and a simple structure, its randomness in hidden layer parameters can lead to poor 

model stability.To address the shortcomings of ELM, researchers have proposed the Hybrid Kernel 

Extreme Learning Machine (HKELM) and Deep Hybrid Kernel Extreme Learning Machine 

(DHKELM) models, which introduce kernel functions and use backpropagation algorithms to train 

models. This significantly enhances the model's expressive power and generalization ability. 

However, DHKELM models involve many hyperparameters, making fault diagnosis accuracy 

sensitive to manual tuning. As a result, more researchers are combining heuristic optimization 

algorithms with classifiers to improve performance. 

Commonly used algorithms include Particle Swarm Optimization (PSO)
[14]

, Whale Optimization 

Algorithm (WOA)
[15]

, Sparrow Search Algorithm (SSA)
[16]

, Grey Wolf Optimizer (GWO)
[17]

, and 

Honey Badger Algorithm (HBA)
[18]

. The Grey Wolf Optimizer achieves good optimization results 

by adjusting the convergence factor and position weighting, but its convergence factor linearly 

decays in the later stages of iteration, making it prone to getting stuck in local optima
[19]

. The 

Sparrow Search Algorithm has strong global search capabilities and fast convergence speed, but it 

suffers from insufficient local search ability and is susceptible to the influence of initial individual 

distribution
[20]

. The Honey Badger Algorithm (HBA), first introduced in 2022, mimics the 

exploration and exploitation strategies of honey badgers searching for food, constantly adjusting the 

position of solutions to find the optimal solution. Compared to other optimization algorithms, HBA 

demonstrates strong global search capability and rapid convergence, excelling in solving complex 

optimization problems. However, like many intelligent algorithms, HBA also faces common 

drawbacks, such as being prone to local optima in later iterations and exhibiting insufficient global 

search capability. 

To address the aforementioned issues, this paper proposes a method that couples an Improved 

Honey Badger Algorithm (IHBA) with a Deep Hybrid Kernel Extreme Learning Machine 

(DHKELM). Firstly, considering the impact of the nonlinear and high-dimensional characteristics 

of transformer fault data on diagnostic accuracy, Kernel Principal Component Analysis (KPCA) is 

used for dimensionality reduction. The reduced data not only retains the key features of the original 

data but also enhances the diagnostic speed. Secondly, the traditional Honey Badger Algorithm 

(HBA) is improved by incorporating Cubic chaotic mapping, random value disturbance strategy, 

elite tangent search, and differential mutation strategy, which is then applied to optimize the 

parameters of the DHKELM model. Finally, the proposed IHBA-DHKELM model is compared 

with multiple diagnostic models, and the results demonstrate that the IHBA-DHKELM model 

achieves higher accuracy and efficiency in diagnosing fault types. 



International Journal of Big Data Intelligent Technology 

138  

2 Fault Feature Extraction 

2.1 Fault Data Preprocessing 

Due to the large span of numerical ranges in DGA data and the wide and uneven distribution of 

features, the accuracy of fault diagnosis can be reduced and the diagnosis time can be increased. 

Therefore, data preprocessing must be performed before DGA. Common data preprocessing 

methods include normalization and standardization. 

(1)Normalization 

 
min

max min

x
x


 


 (1) 

(2)Standardization 

 
x

x





   (2) 

where μ and σ are the mean and standard deviation of the sample data, respectively. 

Table 1 shows the comparison of accuracy between the original data and the preprocessed data. 

Table 1 Comparison of diagnostic results under different data preprocessing 

Preprocessing Method Diagnostic Accuracy/% 

Original Data 

Normalization 

Standardization 

52.3 

67.4 

76.3 

2.2 Dimensionality Reduction of Multidimensional Fault Features 

Through statistical analysis of transformer faults, it can be observed that when a transformer 

experiences a fault, the main gases are H2, C2H4, CH4, C2H6, C2H2 and TH, where TH represents the 

sum of H2, C2H4, CH4, C2H6, C2H2. When using these six gases as input parameters, the impact of 

data preprocessing on the model's fault diagnosis rate may be overlooked. Therefore, this paper 

pairs the aforementioned six gases in ratios to generate DGA data for transformer fault diagnosis, as 

shown in Table 2. 

Table 2 Dissolved gas ratio in oil 

Number Feature Parameters Number Feature Parameters 

X1 

X2 

X3 

X4 

X5 

X6 

X7 

X8 

H2 

CH4 

C2H6 

C2H4 

C2H2 

H2/C2H4 

H2/CH4 

H2/C2H6 

X9 

X10 

X11 

X12 

X13 

X14 

X15 

X16 

H2/TH 

CH4/C2H6 

CH4/C2H4 

CH4/TH 

C2H6/C2H4 

C2H6/TH 

C2H4/TH 

C2H2/TH 

KPCA is a nonlinear dimensionality reduction method based on kernel techniques. It effectively 

removes redundant features in the data and extracts nonlinear features that contain essential 

information. It addresses the limitations of PCA, which can only handle linear data, thereby 

enhancing modeling efficiency and performance. 

In this study, KPCA is employed to reduce the dimensionality of high-dimensional nonlinear 
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DGA data, and the results are shown in Figure 1.  

 

Fig. 1 Characteristic contribution rate and cumulative contribution rate of each principal 

component 

As shown in Figure 1, the cumulative contribution rate of the first nine principal components 

reaches approximately 95%, which captures most of the required feature information. Therefore, the 

dimensionality of the reduced features is set to 9. 

SVM fault diagnosis is performed on both the original and reduced-dimensional data, comparing 

the running time and diagnostic accuracy before and after dimensionality reduction, as shown in 

Table 3. 

Table 3 Comparison before and after KPCA extraction 

 KPCA before 

downscaling 

KPCA after 

downscaling 

Fault diagnosis accuracy/% 

Running time/s 

72.3 

23.73 

84.25 

14.62 

3 DHKELM Transformer Fault Diagnosis Model 

3.1 Hybrid Kernel Extreme Learning Machine 

Extreme Learning Machine (ELM) is a learning algorithm used for Single Hidden Layer 

Feedforward Neural Networks (SLFN)
[21]

. The weights and biases of the hidden layer are randomly 

generated and remain fixed, eliminating the need for the iterative optimization process found in 

traditional neural networks. This makes the training process very fast. 

Assume there is a training dataset with N training samples  ( , ), 1,2,...,t tW x y t N  , where xi is 

the input and yi is the output. If the number of training samples equals the number of hidden layer 

neurons, the learning process of ELM can be expressed through the least squares solution: 

 H T    (3) 

In the equation,    represents the optimal weight matrix of the hidden layer output; H  denotes 

the Moore-Penrose generalized inverse matrix of the hidden layer output matrix H; and T is the true 
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target output matrix. 

Shang et al
[22]

. improved the generalization ability of ELM by introducing the kernel parameter 

HH
T
. The kernel function of KELM is as follows: 

 
,

( ) ( ) ( , )
i j

T

KELM

KELM i j i j

HH

h x h x K x x

 

  

 (4) 

Therefore, the model of KELM can be expressed as: 

 

1

1

( , )

( ) ( )

( , )

KELM

N

K x x
E

y x T
C

K x x



 
 

 
 
  

M  (5) 

In the equation, the constant C is the penalty parameter; E is the identity matrix; and h(x) is the 

transfer function.  

To further enhance the learning and generalization capability of KELM, a new hybrid function is 

constructed using a linear weighting method, combining the Gaussian kernel function from the local 

kernel function and the polynomial kernel function from the global kernel function. The equation 

for this hybrid function is: 

 
2

2

,
( , ) exp( ) (1 )(( ) )

2

i b

i i

x x
K x x x x a 


       (6) 

In the equation, γ is the weight coefficient of the hybrid function; a and b are the constant 

parameter and the exponent parameter of the polynomial kernel function, respectively. 

3.2 Deep Hybrid Kernel Extreme Learning Machine Based on Autoencoder 

According to the condition that the input of the objective function must equal the output in the 

Extreme Learning Machine Autoencoder (ELM-AE) model
[23]

, effective features can be extracted 

from the data, thereby improving classification accuracy. As shown in Figure 2, by incorporating 

the Extreme Learning Machine Autoencoder (ELM-AE) into the Deep Extreme Learning Machine 

(DELM), a Deep Hybrid Kernel Extreme Learning Machine (DHKELM) is constructed. This 

integration enhances the model's robustness and generalization ability, leading to improved 

classification performance and achieving a high level of fault diagnosis accuracy. The specific steps 

are as follows: 

X1

X2

.

.

.

Xn

.

.

.

1

h1

1

hn

.

.

.

1 1

hn+1 hm

H1 Hn Hn+1 Hm

1

2

k

.

.

.

K(x,x1)

K(x,x2)

K(x,xk)

1

r

.

.

. .
.
.

Z1

Z2

Zd

R

1

T
T

n
 ,in in 

 ,out out 

input layer

output layerhidden layer

karyomapping

1

T

input layer

X1

X2

.

.

.

hidden layer

.

.

.

1

h1

H1

X1

X2

XdXd

output layer

.

.

.

1

2

.

.

.

hidden layer

.

.

.

1

hn+1

Hn+1

1

2

hd

.

.

.

hd

1

T

n 

The first ELM-AE The n+1 ELM-AEinput layer output layer  
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Step 1:Randomly generate orthogonal parameters an and bn between the input layer and the 

hidden layer in the n-th ELM-AE. 

Step 2:Calculate the output Ht of the temporary hidden layer and the weights of the n+1-th 

hidden layer. 

 
1( )t t t tH g a H b   (7) 

 

1

1 ( ) ( )T T

i t t t n

E
H H H H

C






 
  
 

 (8) 

In the equation, g(x) represents the activation function. 

Step 3: Further stack the hidden layers obtained from the ELM-AE in Step 2. The output Hn of 

the n-th hidden layer serves as the input Ht+1 for the n+1-th layer. The constructed multilayer 

structure is as follows: 

 
0

1 1(( ) ), 0,1,...., 1T

n n n

H X

H g H n m 



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 (9) 

The expression for the output R of the fully connected layer is: 

  in n m inR g H    (10) 

In the expression, in and in represent the input weights and biases of the fully connected layer.  

Step 4: By performing parameter tuning, adjust the weights and biases between the output R of 

the last hidden layer and the fully connected layer. The output layer is constructed as a traditional 

fully connected neural network layer, yielding the reconstructed data Zd, expressed as: 

 ( ) ( ( ) )d out out out in m in outZ g g g H           (11) 

In the expression,
out and

out represent the output weights and biases of the fully connected 

layer.  

The objective function of the DHKELM model is to minimize the error ε between the 

reconstructed data and the input data. Its expression is: 

 
2

2
, , ,

arg min
in in out out

d dZ X
   

    (12) 

Compared to traditional ELM, the DHKELM gradually extracts and combines the features of the 

data through a multi-layer structure while leveraging the nonlinear mapping capabilities of hybrid 

kernels to handle complex nonlinear problems. Its mathematical model integrates the fast learning 

of ELM with the powerful nonlinear capabilities of kernel methods, while also incorporating the 

hierarchical feature extraction characteristics of deep learning. 

3 Honey Badger Optimization Algorithm and Its Improvement 

3.1 Honey Badger Optimization 

The Honey Badger Optimization Algorithm
[24]

(HBA) is a nature-inspired swarm intelligence 

optimization algorithm that draws inspiration from the survival strategies of the honey badger. The 

HBA mimics the behavior of honey badgers when foraging for food and avoiding danger, using 

their foraging strategies to solve optimization problems. This algorithm is characterized by strong 

evolutionary capability, fast search speed, and robust optimization ability. Theoretically, the HBA 

consists of two phases: exploration and exploitation, which qualifies it as a global optimization 

algorithm. The steps of the HBA are detailed as follows. In HBA, the candidate solution population 

is represented as: 
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where the position of the i-th honey badger is 
1 2, , ,
i i i

D

ix x x x   K ｡ 

(1)Initialization: Initialize the number of honey badgers (population size N) and their respective 

positions according to Equation (14): 

  1i d i ix lb r ub lb     (14) 

In the equation, r1 is a randomly selected number from the interval [0,1]; xi is the position of the 

i-th honey badger, representing a candidate solution in the population; lbi and ubi are the lower and 

upper bounds of the search domain, respectively. 

(2) Defining Intensity: The intensity is related to the concentration of the prey's scent and the 

distance between the prey and the i-th honey badger. Ii represents the scent intensity of the prey; if 

the scent concentration is high, the honey badger will move faster, and vice versa. It is defined by 

Equation (15): 

 

2 2

2

1

4

( )

i

i

i i

i prey i

S
I r

d

S x x

d x x





 

 

 

 (15) 

In the equation, r2 is a randomly selected number from the interval [0,1]; S represents the source 

intensity or concentration intensity. In Equation (15), di indicates the distance between the prey and 

the i-th honey badger. 

(3) Updating the Density Factor: The density factor α controls the time-varying randomization to 

ensure a smooth transition between exploration and exploitation. The decreasing factor α, which 

reduces with the number of iterations, is given by Equation (16): 

 
max

exp( )
t

C
t




   (16) 

In the equation, tmax is the maximum number of iterations, and C is a constant greater than or 

equal to 1 (default value is 2). 

(4) Escaping Local Optima: This step, along with the next two steps, is designed to escape local 

optimum regions. In this case, the proposed algorithm utilizes a flag F to provide individuals with 

more opportunities to rigorously explore the search space by changing the search direction. 

(5) Updating the Position of Agents: The position update process of the honey badger algorithm 

\xnew is divided into two parts: the "digging phase" and the "bee phase." 

1) Digging Phase: In the digging phase, the honey badger performs movements similar to a heart 

shape, which can be simulated by Equation (17): 

  3 4 5cos(2 ) 1 cos(2 )new prey prey ix x F I x F r d r r                (17) 

In the equation, xprey represents the position of the prey, which is the best position found so 

far—the global optimum; β≥1 (default value = 6) indicates the honey badger's ability to acquire 

food; di is the distance between the prey and the i-th honey badger, as described in Equation (15). r3

｡r4 and r5 are three random numbers between 0 and 1. F serves as a flag to change the search 

direction, and its value is determined by Equation (18): 
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61      if   0.5

1   

r
F

else


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
 (18) 

r6 is a randomly selected number from the interval [0,1].  

During the digging phase, the honey badger primarily relies on the scent intensity I of the prey 

xprey, the distance di between the honey badger and the prey, and the time-varying search influence 

factor α. Additionally, during the digging activity, the honey badger may be influenced by any 

disturbances F, enabling it to find better prey positions. 

Bee Phase: When the honey badger follows the honey guide bird to the hive, this can be 

simulated using Equation (19): 

 7new prey ix x F r d      (19) 

In the equation, r7 is a randomly selected number from the interval [0,1]. Here, xnew refers to the 

new position of the honey badger, while xprey is the position of the prey. The values of F and α are 

determined by Equations (18) and (16), respectively. From Equation (19), it can be seen that the 

honey badger searches in the vicinity of the prey position xprey based on the distance information di 

of the prey found so far. During this phase, the search is influenced by the time-varying factor α. 

Additionally, the honey badger may encounter disturbances F. 

3.2 Improved Honey Badger Algorithm 

To address the shortcomings of the honey badger algorithm, this paper introduces Cubic chaotic 

mapping, random value perturbation strategy, elite tangent search, and differential mutation strategy 

to improve the traditional honey badger algorithm (HBA). The details are as follows. 

(1)Cubic chaotic mapping 

Since the initial population of the basic honey badger search algorithm is generated randomly, it 

cannot ensure that the individuals' initial positions are uniformly distributed in the search space, 

which affects the algorithm's search speed and optimization performance. To improve the 

initialization process of the honey badger algorithm, Cubic mapping is introduced to enhance the 

exploration of the initial population. The Cubic mapping is defined by Formula (20): 

 
2

1

( )

(1 )

i b b b i

i i i

x l u l z

z z z

   

 
 (20) 

In the equation, xi represents the position of the i-th honey badger; lb and ub are the lower and 

upper bounds of the variable boundaries; Zi is the Cubic chaotic sequence; andρis a constant, 

typically set to 3. 

(2)Random value perturbation strategy 

In the honey badger algorithm, the position of the honey badger is always updated based on the 

population's best value xprey, which can lead to premature convergence as the population clusters 

around the optimal individual. To enhance the global optimization capability of the honey badger 

algorithm, a random search strategy is introduced, which determines the update strategy based on 

the value of coefficient A. When |A|≥1, a search strategy that perturbs random individuals is 

executed; otherwise, the honey badger's position is still updated based on xprey. The expression for A 

is given by Equation (21): 

 2A m r m     (21) 

In the equation,
max

2 2
t

m
t

   ,its value decreases linearly from 2 to 0, with r being a random 
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number in the interval (0, 1). From the above two formulas and the expression for m, it can be seen 

that the value of |A| generally shows a linear decreasing trend. In the early stages of iteration, the 

algorithm frequently executes the random search strategy to avoid premature clustering of the 

population, enhancing the exploration of honey badger individuals in the search space and 

improving global search capability. 

At this time, the mathematical expressions for the honey badger's searching during the digging 

phase and the honey phase change to: 

  3 4 5cos(2 ) 1 cos(2 )new rand i rand ix x F I x F r d r r                (22) 

 
7new rand ix x F r d      (23) 

At this point, the expression for di is as follows: 

 
i rand id x x   (24) 

(3)Elite tangent search and Differential mutation strategy 

When the population finds the best value unchanged for three iterations, the following elite 

tangent search and differential mutation strategies are executed. In each iteration, the first half of 

the population with lower fitness values is designated as the elite subgroup, while the latter half is 

designated as the exploration subgroup. 

1)The migration strategy of the elite subgroup. 

When individuals are close to the current optimal solution, they search the surrounding area, a 

behavior known as local search, which can improve convergence speed and solution accuracy. Since 

the fitness of the elite subgroup is close to the current optimal solution, allowing the elite subgroup 

to engage in local development can enhance convergence speed and solution accuracy. The formula 

for the elite tangent search strategy is as follows: 

 
tan( ) ( )     if X=optS

tan( ) ( )     if X optS

prey prey

prey prey

X step rand X X
X

X step X X





    
 

    
 (25) 

 
2.1

rand


    (26) 

 
dim

10 ( 0.5) ( ) log(1 10 )step sign rand norm optS
t

        (27) 

In the equation, norm()represents the Euclidean norm, X is the current solution, and optS is the 

current optimal solution used to guide the search process toward the best solution. 

The honey badger individuals perform tangent searches based on the positions of the elite honey 

badgers, allowing for better exploration of the area around the optimal solution. This evolutionary 

strategy effectively utilizes the positional information of the current optimal solution, accelerating 

the convergence speed and improving solution accuracy. 

2)Evolutionary Strategy of the Exploratory Subpopulation 

As can be seen from the formula, in the honey badger algorithm, the position update of the honey 

badger individuals in the population generates new individuals around the current individual and the 

current optimal individual Xprey. This means that other individuals in the group move toward Xprey. If 

Xprey is a local optimal solution, as the iterations continue, the honey badger individuals in the 

population will gather around Xprey, resulting in poor population diversity and making the algorithm 

prone to premature convergence. 

To address these issues, this paper adopts a differential mutation strategy. Inspired by the 
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mutation strategy in differential evolution algorithms, random differences are utilized with the 

current honey badger individual, the current optimal individual, and a randomly selected honey 

badger individual from the population to generate new individuals, as shown in formula (28): 

 
1 0 2 3( 1) ( ) ( ( ) ( ))rand rand randX t X t F X t X t      (28) 

The formula is as follows: F0 is the differential evolution scaling factor set to 0.4; t is the current 

iteration number; Xrand1,Xrand2,Xrand3 are randomly selected honey badger individuals. 

In the formula, F0 is the differential evolution shrinkage factor set to 0.4; 𝑡is the current iteration 

number; and Xrand1,Xrand2,Xrand3 are the randomly selected honey badger individuals. 

3.2 Performance Testing of IHBA 

The optimization performance of IHBA is tested using three test functions from CEC 2017: F1, 

F4, and F7, as shown in Table 4. The results are compared with the GWO, SSA, and HBA 

algorithms. All four algorithms have a population size of 30 and a maximum of 1000 iterations. The 

optimization convergence curves are shown in Figure 3. It can be observed that all four functions 

converge sequentially with the increase in the number of iterations, with IHBA demonstrating the 

fastest convergence speed, significantly outperforming the other algorithms. This indicates that the 

IHBA algorithm possesses excellent optimization capabilities. 

Table 4 Test functions 

Test functions Search 

interval 
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2 6 2

1 1

2
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i

i

f x x x
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4 1
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(a) F1 convergence curve 
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(b) F4 convergence curve 

 
(c) F7 convergence curve 

Fig. 3 Optimizing convergence curve 

 

4 Transformer Fault Diagnosis Based on IHBA-DHKELM 

The fault sample data is selected from reference [25] and the IEC TC 10 database. The dataset 

includes six different operating conditions of transformers: high energy discharge, low energy 

discharge, partial discharge, high-temperature overheating, medium and low-temperature 

overheating, and normal operation
[26]

. Each operating condition contains DGA sample data of 

oil-immersed transformers featuring five fault gases: H2｡C2H2｡C2H4｡C2H6｡CH4, totaling 450 

samples. The data is divided into training and testing sets in a ratio of 7:3, with the first 315 samples 

used as the training set and the last 135 samples used for testing the model. The six different 

operating conditions are numbered from 1 to 6, as shown in Table 5. 

Table 5 Composition of fault sample data 

Fault type Number Traning sets Test sets Total sample 

High energy discharge 

Low energy discharge 

Partial discharge 

High-temperature overheating 

Medium and Low-temperature 

overheating 

Normal operation 

1 

2 

3 

4 

5 

6 

91 

39 

58 

57 

44 

26 

39 

17 

25 

25 

18 

11 

130 

56 

83 

82 

62 

37 

Combined diagnosis rate  315 135 450 

To avoid the mixing and overlapping of fault information in the original data, KPCA is utilized 

to reduce the dimensionality of the fault features, resulting in a new fault dataset composed of 9 
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principal components. This new dataset is then input into the model for training and testing, and the 

fault diagnosis accuracy for each model is analyzed. The simulation experimental platform used in 

this study is a computer running the Windows 10 operating system with Matlab 2020b as the 

computational environment. 

4.1 Comparison of Different Models with DHKELM Performance in Diagnosis 

To validate the diagnostic accuracy of the DHKELM model, this study compares it with five 

other models: Probabilistic Neural Network (PNN), Random Forest (RF), Support Vector Machine 

(SVM), Extreme Learning Machine (ELM), and XGBoost
[27,30]

. The new fault dataset obtained 

from KPCA dimensionality reduction is input into the different models for classification training. 

Each model is run 30 times to obtain the average diagnostic accuracy for various fault types, as 

shown in Table 6. 

Table 6 Comparison of average diagnostic accuracy of different diagnostic models 

Fault type 

Comparison of average diagnostic accuracy of different 

diagnostic models% 

BP RF SVM ELM 
XGB- 

oost 
DHKELM 

High energy discharge 

Low energy discharge 

Partial discharge 

High-temperature 

overheating 

Medium and 

Low-temperature 

overheating 

Normal operation 

66.7 

94.1 

37.5 

80.0 

85.7 

83.8 

69.0 

96.7 

60.0 

82.8 

93.8 

78.4 

75.4 

93.6 

56.3 

94.7 

90.9 

79.3 

83.3 

81.1 

58.8 

90.0 

77.8 

96.8 

55.6 

96.4 

89.5 

96.2 

100 

88.9 

100 

91.7 

93.3 

83.3 

71.4 

100 

Combined diagnosis 

rate 
77.48 81.45 80.79 83.44 86.65 89.74 

As shown in Table 6, the diagnostic accuracy of the DHKELM model is significantly higher than 

that of the other models during high-energy discharge, partial discharge, and normal operating 

conditions. The overall diagnostic accuracy of the DHKELM model reached 89.743%, while the 

accuracies of the BP, RF, SVM, ELM, and XGBoost models were 77.48%, 81.45%, 80.79%, 

83.44%, and 86.65%, respectively, all of which were lower than that of the DHKELM model. This 

indicates that the DHKELM model performs better in classification diagnostics compared to the 

other models. 

4.2 IHBA-DHKELM Model Diagnosis 

The IHBA-DHKELM model is used to diagnose the above samples, and its performance is 

compared with the HBA-DHKELM, SSA-DHKELM, and GWO-DHKELM models. The 

parameters for each model are shown in Table 7, while the comparison of the accuracy rates for 

different diagnostic methods is presented in Table 8. 
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Table 7 Related algorithm parameters 

Algorithm Parameters 

SSA 

GWO 

HBA 

ST=0.7;PD=0.4;SD=0.2 

Alpha=Beta=Deta=0 

Beta=6;C=2 

 

Table 8 Comparison of fault diagnosis accuracy of different diagnosis models 

Fault type 
SSA- 

DHKELM 

GWO- 

DHKELM 

HBA- 

DHKELM 

IHBA- 

DHKELM 

High energy 

discharge 

Low energy 

discharge 

Partial discharge 

High-temperature 

overheating 

Medium and 

Low-temperature 

overheating 

Normal operation 

94.1% 

81.3% 

86.7% 

60.0% 

75.0% 

100% 

100% 

76.5% 

77.1% 

95.7% 

40.0% 

100% 

94.7% 

100% 

88.2% 

92.0% 

75.0% 

100% 

100% 

95.7% 

100% 

93.9% 

95.0% 

100% 

Combined 

diagnosis rate 
82.96% 81.48% 91.11% 97.03% 

From Table 8 and Figures 4 to 7, it can be observed that the IHBA-DHKELM model achieved 

the highest fault diagnosis accuracy, with both high-energy discharge, partial discharge, and normal 

conditions reaching 100%. The accuracy rates for low-energy discharge, high-temperature 

overheating, and medium-low temperature overheating were 95.7%, 93.9%, and 95.0%, 

respectively. The diagnosis accuracy for all six fault types was above 93%, resulting in a total fault 

diagnosis accuracy of 97.03%. This represents an improvement of 7.29% over the DHKELM 

classifier's diagnosis results and is 14.07%, 15.55%, and 5.92% higher than the SSA-DHKELM, 

GWO-DHKELM, and HBA-DHKELM models, respectively. This indicates that the proposed 

IHBA-DHKELM model has better diagnostic accuracy. 

 

Fig. 4 SSA-DHKELM fault diagnosis classification 
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Fig. 5 GWO-DHKELM fault diagnosis classification 

 

Fig. 6 HBA-DHKELM fault diagnosis classification 

 

 

Fig. 7 IHBA-DHKELM fault diagnosis classification 
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5 Conclusion 

(1) This paper utilizes KPCA to extract 9 input features with the highest principal component 

contribution rates from the 16-dimensional DGA gas concentration data, and compares the results 

with SVM, thereby improving both diagnosis accuracy and reducing diagnosis time. 

(2) The diagnostic results of the DHKELM model compared with BP, RF, SVM, ELM, and 

XGBoost indicate that DHKELM exhibits better feature extraction capabilities and higher 

diagnostic accuracy. 

(3) Optimization tests on the three benchmark functions from CEC 2017 for the IHBA, SSA, 

GWO, and HBA algorithms demonstrate that IHBA has superior optimization capabilities and 

effectively avoids getting trapped in local optima. 

(4) Simulation results show that the IHBA-DHKELM model significantly optimizes the 

hyperparameters in DHKELM, leading to a marked improvement in diagnostic accuracy compared 

to SSA-DHKELM, GWO-DHKELM, and HBA-DHKELM, while exhibiting higher stability and 

generalization ability. 

References 

[1] Cao, Y.. Research on Transformer Fault Diagnosis Method Based on Improved Grey Wolf 

Algorithm Optimized BP Neural Network. Electrical Switch2024;62(02), 82-85.. 

[2] Y. Zhang, L. Zhao, J, "Forecasting of Dissolved Gases in Power Transformer Oil Based on 

DOG -LSSVM Regression and Artificial Bee Colony," 2018 International Conference on Power 

System Technology (POWERCON), Guangzhou, China, 2018, pp. 3620-3625. 

[3] Yuwei Zhang. Transformer fault diagnosis based on Fuzzy rogers four ratio method. 

Electrotech Technol 2021;(12):89–92. 

[4] Yi Liu, Yuanping Ni. Transformer fault diagnosis method based on three-ratio gray correlation 

analysis. High Volt Technol2002;28(10):16–7. 

[5] Chengming Zhang, Jufang Xie, Song Yu, Chao Tang, Dong Hu. An improved fault diagnosis 

method for transformer Duval pentagon1 based on spatial analysis theory. High Volt Technol 

2022;1–11 

[6] Xiao, Y.; Pan, W.; Guo, X.; Bi, S.; Feng, D.; Lin, S. Fault Diagnosis of Traction Transformer 

Based on Bayesian Network. Energies 2020, 13, 4966. 

[7] Z. Zhan, J. Chen, W. Chen, "Transformer Fault Diagnosis Method Based on Fuzzy Logic and 

D-S Evidence Theory," 2022 5th International Conference on Energy, Electrical and Power 

Engineering (CEEPE), Chongqing, China, 2022, pp. 470-475. 

[8] Jinglong Jia, Tao Yu, Zijie Wu et al. 2017 Fault diagnosis method of transformer based on 

convolutional neural network[J] Electrical Measurement & Instrumentation 54 62-67 

[9] Yang Fang Ming, Liu Chuan, Sun Yong et al. 2014 Fault Prediction Based on Dissolved Gas 

Concentration from Insulating Oil in Power Transformer Using Neural Network[J] 2789 

312-317 

[10] Meng W.D. 2020 Transformer Fault Diagnosis Based on BP Neural Network J. 

Communication power technology 37 84-86 

[11] Yang X, Pang S, Shen W, et al. Aero engine fault diagnosis using an optimized extreme 

learning machine[J]. International Journal of Aerospace Engineering, 2016, 2016(1): 

7892875. 



International Journal of Big Data Intelligent Technology 

151  

[12] Hu, Beibei, and Yunhe Cheng. "Predicting regional carbon price in China based on 

multi-factor HKELM by combining secondary decomposition and ensemble learning." Plos one 

18.12 (2023): e0285311. 

[13] Wang W, Cui X, Qi Y, et al. Prediction model of coal seam gas content based on kernel 

principal component analysis and IDBO-DHKELM[J]. Measurement Science and Technology, 

2024, 35(11): 115113. 

[14] Guerbas, F., Benmahamed, Y., Teguar, Y. et al. Neural networks and particle swarm for 

transformer oil diagnosis by dissolved gas analysis. Sci Rep 14, 9271 (2024). 

[15] H. Peng and C. Zhao, "Research on fault diagnosis of KPCA-WOA-BP transformer," 2024 5th 

International Conference on Computer Engineering and Application (ICCEA), Hangzhou, 

China, 2024, pp. 1487-1493. 

[16] M. Zhang and W. Chen, "Fault Diagnosis of Power Transformer Based on SSA—MDS 

Pretreatment," in IEEE Access, vol. 10, pp. 92505-92515, 2022. 

[17] Leifeng He and Ying Huang 2022 A transformer fault diagnosis method based on grey wolf 

optimization algorithm optimized support vector machine[J] Hongshuihe 41 84-88 

[18] Guomin Xie and Jialiang Wang . "Transformer Fault Identification Method Based on Hybrid 

Sampling and IHBA-SVM." Journal of Electronic Measurement and Instrumentation, vol. 36, 

no. 12, 2022, pp. 77-85. 

[19] Xuan Chen. "Research on Transformer Feature Selection Method Based on Grey Wolf 

Algorithm." Electrical Materials, vol. 2024, no. 04, 2024, pp. 90-92, 96. DOI: 

10.16786/j.cnki.1671-8887.eem.2024.04.024. 

[20] Xin Zheng and Chun Shi et al. "Fault Diagnosis Method for Coal Mine Transformers Based on 

ISSA-SVM." Electromechanical Engineering Technology, vol. 51, no. 07, 2022, pp. 31-34, 49 

[21] Xiaoqin Zhang and Chunqiang Hu. "Data Acquisition and Monitoring System Attack 

Detection Model Based on Improved Extreme Learning Machine." Journal of Nanjing 

University of Aeronautics and Astronautics, 2021, pp. 708-717 

[22] Liqun Shang,Yadong Hou, et al. "Transformer Fault Diagnosis Based on IDOA-DHKELM." 

High Voltage Engineering, vol. 49, no. 11, 2023, pp. 4726-4735. DOI: 

10.13336/j.1003-6520.hve.20221483. 

[23] Jing Yan, Xueying Zhang, et al. "Regression Prediction Model Combining Stack-based 

Supervised AE and Variable Weight ELM." Computer Engineering, vol. 48, no. 08, 2022, pp. 

62-69, 76. 

[24] Fatma A. Hashim, Essam H. Houssein,et al. Honey Badger Algorithm: New metaheuristic 

algorithm for solving optimization problems,Mathematics and Computers in 

Simulation,Volume 192,2022,Pages 84-110,ISSN 0378-4754 

[25] Lu W, Shi C, Fu H, et al. Fault diagnosis method for power transformers based on improved 

golden jackal optimization algorithm and random configuration network[J]. IEEE Access, 

2023, 11: 35336-35351. 

[26] Y. Wu, Y. Zhang, X. Zhong and L. Cheng, "A Power Transformer Fault Diagnosis 

Method-Based Hybrid Improved Seagull Optimization Algorithm and Support Vector 

Machine," in IEEE Access, vol. 10, pp. 17268-17286, 2022. 

[27] Zhang, X.; Sun, Z. Application of Improved PNN in Transformer Fault Diagnosis. Processes 

2023, 11, 474.  

[28] L. Kou, C. Liu, G. -w. Cai, Z. Zhang, X. -j. Li and Q. -d. Yuan, "Fault Diagnosis for Power 

Converters based on Random Forests and Feature Transformation," 2020 IEEE 9th 

International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 

Nanjing, China, 2020, pp. 1821-1826, doi: 10.1109/IPEMC-ECCEAsia48364.2020.9367970.  



International Journal of Big Data Intelligent Technology 

152  

[29] Pengfei Cao and Yongping Gan,. "Transformer Fault Diagnosis Based on Vector Weighting 

Algorithm Optimized ELM." Environmental Technology, vol. 41, no. 10, 2023, pp. 136-142. 

[30] Jiang J, Liu Z, Wang P, et al. Improved Crow Search Algorithm and XGBoost for Transformer 

Fault Diagnosis[C]//Journal of Physics: Conference Series. IOP Publishing, 2023, 2666(1): 

012040. [4] BRAND K P,KOPAINSKY J. Particle densities in a decaying SF6 plasm[J]. 

Applied Physics,1978,16(4):425-432. 

 


