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Abstract: With the continuous advancement of artificial intelligence technology, its 

application in lithium battery health prediction has been increasingly widespread. From the 

vantage point of the variations in the number of patent applications and focal points, and by 

leveraging the IPC classification, an analysis is carried out on the macro-distribution of 

patent applications and the burgeoning growth of relevant applications. Through the text 

data within the patents, the branches and technical trajectories of artificial intelligence 

based lithium battery health prediction technology are gradually becoming more distinct. 

This approach enables the prediction of technological development trends and challenges in 

this field, thereby assisting research institutions and enterprises in closely tracking the 

technological progress in a specific domain. 

1. Introduction 

Lithium-ion batteries have become a staple of numerous applications due to their advantageous 

properties, including high energy density, long service life, high power tolerance, low self-discharge 

rate, and green environmental protection. These batteries are utilized in a variety of fields, including 

electric vehicles, electronic products, power tools, photovoltaic power stations, wind power stations, 

home energy storage, backup power supplies, and more[1]. However, it is important to note that 

after extended periods of use and repeated charge and discharge cycles, the capacity and power of 

lithium-ion batteries may degrade to varying extents. Overcharging of the negative electrode, 

overcharging of the positive electrode, and the influence of ambient temperature on the exterior of 

the lithium battery can cause irreversible changes inside the battery. Decay of the lithium battery 
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can lead to a decline in charge and discharge performance, as well as the potential for safety hazards 

such as thermal runaway. Real-time monitoring of critical battery parameters, including voltage, 

current, temperature, charge, discharge efficiency, and SOH, is paramount in averting the risk of 

overcharging, over-discharging, and overheating, thereby mitigating the potential for combustion or 

explosion. Among these parameters, SOH serves as a pivotal indicator of the battery's health status. 

SOH monitoring enables the prevention of battery overcharging, over-discharging, and other 

scenarios that could compromise its integrity, thus facilitating informed decision-making by users 

regarding the utilization and maintenance of the battery. This, in turn, ensures the safety and 

reliability of the battery [2]. 

There are three main types of SOH estimation methods for lithium-ion batteries: (1) empirical 

estimation methods, mainly based on mathematical statistics, such as the cycle number method and 

the ampere-hour method [3]. (2) Model-based methods are based on the model of the internal 

chemical process of the battery. Based on Ohm's law, Kirchhoff's voltage-current law, 

electrochemical reaction process (Butler-Volmer law), etc., the influence of aging process and stress 

factors on state variables are analyzed [4]. For example, the impedance spectrum curve is measured 

at different stages of the battery cycle life, and the battery equivalent circuit model is obtained 

based on the impedance spectrum curve. Then, the influence of parameters such as solution 

resistance, charge transfer resistance, and Warburg impedance in the cycle number and equivalent 

circuit model is analyzed. (3) Data-driven estimation methods, including support vector machine 

(SVM), autoregressive moving average (ARMA) [5], particle filter (PF), and neural network (NN). 

With the rapid development of artificial intelligence technology, the application of deep learning 

algorithms to lithium battery SOH prediction has gradually become popular. Among them, 

representative algorithms include CNN [6], RNN, LSTM, GAN [7], and Attention Mechanism [8]. 

Data-driven prediction does not require knowledge of the mechanism of the object system [9]. 

Based on the collected data, it mines the implicit information through various data analysis and 

learning methods to make predictions, thus avoiding the complexity of model acquisition. It is a 

more practical prediction method. The number of patent applications for lithium-ion battery SOH 

prediction methods based on data-driven has increased sharply year by year, generating a large 

amount of patent text data. The data of the patent application content is analyzed and the law is 

mined to identify the direction of technological evolution. By analyzing these patent application text 

data and the trends of patent applications, the future evolutionary route of the data-driven battery 

SOH prediction method is predicted. For example, new algorithm trends, design improvements of 

battery management systems, and new strategies for optimizing battery performance may be 

discovered. It is very valuable for battery manufacturers, automakers, and decision makers in 

various fields involved in battery technology. Through analysis based on patent big data, related 

industries can better understand market trends and adjust their R&D directions and business 

strategies to remain competitive. 

2. Analysis Methods Based On Patent Big Data 

Analysis based on patent big data is an important means of technological research, market 

decision-making and innovation planning [10]. Its core lies in mining the implicit rules in 

multidimensional data such as patent texts, applicants, and technology classifications through 

systematic methods. 

2.1. Data Sources 

Mainstream patent databases (e.g., WIPO, USPTO, CNIPA, Derwent Innovation, Patentics), 

commercial databases (e.g., Wisdom Buds, incoPat), and open-source tools (e.g., Google Patents 
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API), this study selects incoPat as the core data source. It contains 120 million+ patents in the 

world's mainstream patent databases (including the OCR text of the full-text specification of 

Chinese patents), integrates patent data from 120+ countries around the world, and supports 

advanced processing functions such as IPC/CPC intelligent classification and applicant 

normalization. Eliminate duplicate patents, and non-related patents (e.g., designs), standardize 

classification symbols (e.g., IPC, CPC), and applicant names (unify different naming of the same 

subject) by extracting key fields (title, abstract, claims, priority date, field of art, inventor, legal 

status) and performing data cleansing. 

2.2. Keywords and IPC Codes 

Keyword combination ("lithium-ion battery*" OR "Li-ion battery*") AND ("SOH" OR "state of 

health" OR "remaining useful life" OR "RUL") AND ("data-driven" OR "machine learning" OR 

"deep learning" OR "AI"). Lithium battery degradation prediction technology is mainly 

concentrated in battery monitoring technology (G01R31/36) and battery management systems 

(H01M10/48). Such patents are also distributed in machine learning applications (G06N3/00), 

electric vehicle applications (B60L58/10), and energy storage systems (H02J7/00). IPC 

classification code combination (IPC: G01R31/36 OR IPC: H01M10/48 OR IPC: G06N3/00) AND 

(IPC: Y02E60/32 OR IPC: B60L58/10). At the same time, combined with semantic retrieval 

methods, technical terms in patent titles/abstracts ("capacity trajectory prediction" and "ultra-early 

life prediction"), are supplemented with synonyms (such as "health estimation" and "degradation 

modeling"). 

2.3. Data samples and statistical analysis 

Through the incoPat patent database, a comprehensive search was conducted on March 20, 2025, 

and after integrating relevant information such as the same family applications, a total of 1,072 

patent data related to the lithium-ion battery health status (Li-ion Batteries Health Estimation) 

evaluation method and device were obtained. From a time dimension, patent applications in this 

field have shown phased changes [11][12]. In 2017, the first related patent application appeared, 

marking the beginning of attention in this field, as shown in Figure 1. Since then, the number of 

applications has gradually increased, and by 2024, the number of patent applications has shown a 

rapid growth trend. Different countries show different levels of activity in this field, with China, the 

United States, Japan, and South Korea being particularly active, as shown in Figure 2. 

 

Figure 1. Changes in patent applications year by year 
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Figure 2. Top 7 countries in terms of number of applications 

 

Figure 3. Top 10 applicants in terms of number of applications 

From the statistical results, it is evident that with the continuous progress of lithium-ion battery 

technology, new research findings and innovations are constantly emerging. This has spurred 

companies and research institutions to proactively file patent applications to safeguard their 

intellectual property rights, thereby driving the growth in the number of patent applications. Among 

the top 10 applicants, colleges and research institutes are the main entities. Harbin Institute of 

Technology(HIT) Beijing Institute of Technology(BIT), Hefei University of Technology(HFUT), 

and Samsung have become the major applicants in this field, as shown in Figure 3. This indicates 

that there is still a long way to go before this technological innovation can be widely applied in 

enterprises. 

3. Analysis of technology route evolution and patent layout 

3.1. Technical Branch Division 

The technical branches of patents related to the SOH of lithium-ion batteries encompass data-

driven SOH prediction, artificial intelligence algorithms, battery management systems, expansion of 

battery application scenarios, and capacity attenuation models. These branches are interconnected 
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and jointly drive the technological development in this field. 

TABLE I.  Technical branches in patents 

Keywords IPC No. Technology Association 

Data-driven SOH prediction 
G01R31/36 

H01M10/48 

Data analysis of battery monitoring and 

management systems 

AI algorithms 
G06N3/00 

G06N20/00 

Application of machine learning 

models in battery data 

Battery Management System 

(BMS) 

H01M10/48 

G01R31/36

7 

BMS hardware design and health status 

integration 

Battery application scenario 

expansion 

B60L58/10 

Y02E60/32 

On-board battery health management 

and clean energy technology 

Capacity attenuation model 
G01R31/36 

G06F17/18 

Statistical capacity prediction and life 

modeling 

3.2. Patent layout hot spots and competition landscape 

Based on the patent statistics and analysis results, within the realm of patents associated with the 

SOH of lithium-ion batteries, the battery monitoring technology (G01R31/36) stands out as the 

most active category. It constitutes approximately 40% of the total patent count, encompassing a 

diverse array of SOH evaluation algorithms. The machine learning applications (G06N3/00) follow 

closely, with a proportion of around 30%. In this category, numerous innovative algorithms, such as 

the long-short-term memory networks (LSTM) and Transformer models, are constantly emerging. 

These algorithms significantly contribute to enhancing the accuracy and efficiency of battery health 

monitoring. Evidently, the patent applications for lithium-battery SOH health-monitoring methods 

integrating AI algorithms currently top the list, making it the most popular research area in this field. 

3.2.1. Based on machine learning algorithms 

The approach based on machine learning algorithms is designed to uncover the latent 

relationship between data features and the battery's health status through in-depth learning of 

extensive battery data. For instance, the support vector machine (SVM) algorithm makes full use of 

the charge-discharge data from multiple battery cycles by constructing and optimizing the SVM 

model. It extracts the inherent modal features from this data, thereby enabling accurate battery fault 

diagnosis and effective health status evaluation. Moreover, some research efforts employ clustering 

algorithms to categorize batteries. For batteries with different degradation patterns, customized 

improved convolutional neural networks (CNNs) are designed. This prediction method, which 

integrates manually extracted and self-extracted features, remarkably enhances the accuracy of 

battery cycle life prediction. 

3.2.2. Based on deep learning algorithms 

Deep learning algorithms, owing to their robust feature-learning capabilities, are capable of 

conducting more profound analyses of battery data. Long Short-Term Memory networks (LSTMs) 

and their variants find extensive applications in the realm of battery health status prediction. These 

models can efficiently capture long-term dependencies within time-series data. When an LSTM-

based model is constructed and key data like voltage and current during the battery's charging and 

discharging processes are inputted, the model can learn the temporal evolution patterns of battery 
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aging characteristics, thus enabling accurate estimation of the battery's health status. Furthermore, 

the GCN-LSTM model, formed by integrating Graph Convolutional Networks (GCN) with LSTM, 

capitalizes on the GCN's proficiency in capturing local features and topological relationships during 

battery aging and the LSTM's aptitude for extracting temporal evolution patterns. This not only 

elevates the quality of feature data but also bolsters the model's generalization ability across diverse 

fast-charging strategies. 

3.2.3. Multi-source data fusion 

The multi-source data fusion strategy aims to comprehensively utilize data from various sources 

to conduct a more thorough assessment of battery health status. Typically, the integrated data 

encompasses not only conventional parameters such as battery voltage, current, and temperature but 

also acoustic emission parameter data and cycle aging parameter data. Through gated neural 

networks, these multi-source data are assigned appropriate weights. Subsequently, by leveraging 

models like convolutional neural networks and long-short-term memory networks for training and 

prediction, it becomes feasible to fully uncover the valuable information embedded in different data 

sets, thereby effectively enhancing the prediction accuracy. For instance, acquiring the battery's 

state of charge and electrochemical impedance spectroscopy (EIS) data at different temperatures 

and utilizing these data to predict the remaining useful life of lithium batteries have yielded 

relatively satisfactory results. 

3.2.4. Model Optimization and Enhancement 

To further enhance the performance of data-driven models, researchers continuously strive to 

optimize and refine these models. On one hand, optimization algorithms like the Particle Swarm 

Optimization (PSO) and Genetic Algorithm (GA) are employed to fine-tune model parameters. By 

identifying the optimal parameter combination, the prediction accuracy of the model can be 

significantly improved. On the other hand, novel model architectures have been proposed, such as 

transformer-based models. These models leverage the self-attention mechanism, enabling them to 

handle long-sequence data more effectively. This mechanism allows the model to capture global 

dependencies within the data, which has led to excellent performance in battery health status 

prediction. Simultaneously, ensemble learning methods have gained widespread application. These 

methods involve fusing multiple models. For example, CatBoost can be integrated as the base 

learner within the NGBoost algorithm. By combining the strengths of both algorithms, the 

estimation accuracy of the SOH of lithium-ion batteries can be further enhanced. 

3.3. Technology Route Integration Trend 

In the realm of lithium-ion battery SOH estimation and prediction, the trend of technology route 

integration is becoming increasingly prominent, emerging as a pivotal driving force behind the 

development of this field. This integration endeavors to consolidate the merits of diverse 

technologies and surmount the constraints of single-technology approaches, thus enabling more 

precise and efficient SOH assessments. 

From the algorithmic perspective, multi-algorithm fusion has emerged as a significant trend. 

Traditional model-based approaches, like electrochemical models, are capable of accurately 

mirroring the intricate physical and chemical processes within the battery. However, they are 

confronted with issues such as high computational costs and challenges in parameter acquisition. 

Conversely, data-driven methods, exemplified by long short-term memory networks (LSTM) 

grounded in deep learning, excel in processing large-scale data and uncovering latent data features. 
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Nevertheless, they lack in-depth comprehension of the battery's internal mechanisms. 

Regarding data fusion, the trend of multi-source data integration is quite evident. During the 

operation of a battery, a wide variety of data are generated. This includes conventional data such as 

voltage, current, and temperature, along with acoustic emission parameter data, cycle aging 

parameter data, and electrochemical impedance spectroscopy (EIS) data. From the vantage point of 

model architecture, integrated learning, and multi-model fusion architectures have become focal 

points of research. To address the limitations of single models, the integration of multiple models 

for SOH estimation has garnered extensive attention. 

With the advancement of technologies like the Internet of Things and cloud computing, the 

integration of technical routes is also manifested in the convergence of cross-domain technologies. 

Cloud-based multi-source data-driven battery health management is gradually gaining traction. By 

uploading the operational data of batteries from diverse scenarios to the cloud, leveraging the 

cloud's robust computing and storage capabilities, integrating multi-source data, and applying a 

plethora of algorithms for analysis and processing, it becomes possible to achieve real-time and 

precise monitoring and management of battery health status. 

4. Technology Trend Forecast and Challenges 

Combining industry development trends, market demands, and the technology R & D cycle, the 

technological roadmap of lithium-battery State-of-Health (SOH) monitoring technology is predicted 

using patent big-data analysis. As artificial intelligence technology continues to advance, over the 

next 5-10 years, the AI-based lithium-battery SOH monitoring technology will mature further and 

integrate more deeply with other technologies. This will not only enhance the prediction accuracy 

of relevant models but also boost efficiency and simplify model complexity, as shown in Figure 4.  

 

Figure 4. Technical Efficacy Focus 

4.1. Accuracy 

The internal dynamics of a lithium battery are highly complex. The stochastic nature of these 

internal changes presents significant obstacles to accurate prediction. For example, the diffusion of 

lithium-ions within the electrolyte, the chemical reactions taking place on the electrode surfaces, 
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and the degradation of active materials all occur randomly. This randomness makes it arduous to 

precisely anticipate the battery's state. Nevertheless, AI approaches can effectively surmount these 

challenges. AI algorithms, such as neural networks, possess the capacity to glean complex patterns 

from extensive datasets. They are capable of analyzing the relationships among diverse battery 

parameters, including voltage, current, temperature, and historical usage data, to discern the 

underlying trends in the battery's internal changes. Even when confronted with the unpredictability 

of internal reactions, AI can detect latent patterns and generate more precise predictions. 

Furthermore, the enhancement of prediction accuracy is intricately linked to the quality of the 

data fed into the system. High-quality data encompasses comprehensive and exact information 

regarding the battery's operation. It encompasses a broad spectrum of data sourced from various 

operating conditions, charging-discharging cycles, and environmental factors. In the case of poor-

quality data, which may contain missing values, noise, or inaccurate measurements, the AI model 

may struggle to learn the correct patterns. This, in turn, can result in inaccurate predictions. 

Conversely, high-quality data enables the AI model to be trained more efficiently, leading to 

improved generalization capabilities and heightened prediction accuracy. Thus, to fully harness the 

potential of AI in lithium-battery SOH monitoring, ensuring the quality of the input data is of 

utmost importance. 

4.2. Efficiency 

Improving the prediction efficiency of the model while maintaining accuracy is very critical in 

practical applications. To improve the efficiency of the AI-based battery health state (SOH) 

prediction method, the first is to optimize data processing, use technologies such as median filters to 

remove noise, use PCA to compress large-scale data and use GANs to generate synthetic data to 

enhance training effects. The second is algorithm optimization, selecting appropriate models 

according to data and tasks, such as using LSTM to process sequence data and GNNs to process 

complex structure data, pruning large models and using knowledge distillation technology, and 

using Bayesian optimization algorithms instead of traditional grid searches for hyperparameter 

tuning. The third is computing facility and deployment optimization, using GPUs and TPUs for 

hardware acceleration, migrating training and reasoning tasks to this; performing edge computing at 

the data source end to reduce data transmission delays and bandwidth consumption and improve 

prediction efficiency. 

4.3. Simplify Model Complexity  

Simplify the model structure by choosing an appropriate basic model by the data characteristics 

and task requirements. For instance, when dealing with data that exhibits time-series features, a 

straightforward autoregressive (AR) or moving average (MA) model can efficiently process the data. 

This not only helps avoid overfitting issues but also reduces computational costs. Regarding 

complex models, pruning and compressing them is essential. We can utilize L1 and L2 

regularization techniques to identify and eliminate unimportant connection weights. Additionally, 

model quantization can be carried out to reduce memory usage and computational load. Another 

viable option is to adopt an integrated learning strategy, like a random forest which is composed of 

multiple decision trees. By aggregating the results of these individual trees, the random forest 

enhances the overall prediction ability and offers strong interpretability, making it more conducive 

to practical applications. Select an adaptive learning rate algorithm, such as Adagrad or Adam, for 

training optimization. These algorithms can automatically adjust the learning rate based on the 

gradient changes during the training process, thus accelerating the model's convergence. For 

example, in the training of lithium-battery SOH prediction models, the Adam algorithm can 
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significantly improve the training efficiency. Moreover, an early termination strategy should be 

employed. When the loss function value of the validation set shows no further decrease within a 

specific number of rounds, the training process is terminated. This effectively prevents overfitting 

and saves computational resources and time. 

5. Conclusion 

Based on the IPC classification number and specific search formula, we precisely retrieved the 

relevant patents regarding Li-ion Batteries Health Estimation Technology from the patent database. 

Subsequently, we conducted an in-depth analysis of the macro-level distribution of patent 

applications. Moreover, by leveraging the patent data, we systematically sorted out the 

technological branches and probed into their evolutionary trajectories. Finally, through these patent 

data, we forecasted the future technological development trends in this field and analyzed the 

potential challenges. These research findings are of crucial importance to relevant research 

institutions. In the future, we plan to analyze this field from the perspective of patent citation 

relationships and by integrating non-patent data. 
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