
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2020.010204

ISSN 2790-0916 Vol. 1, Issue 2: 28-36

Copyright: © 2020 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

28

Consistent Hash Algorithm in Distributed Monitoring

System

Adityan Kumare
*

Myanmar Institute of Information Technology, Myanmar

*
corresponding author

Keywords: Consistent Hash Algorithm, Distributed System, Monitoring System, Data

Management

Abstract: The cloud monitoring system allows administrators to know the historical

performance of each component of the platform at any time and control the usage of

various resources. Monitoring can remind operation and maintenance managers in a timely

manner when a fault occurs, quickly find problems, and better solve errors. The purpose of

this paper is to study the application of consistent hash algorithm in distributed monitoring

system. The architecture and design concept of distributed monitoring are analyzed, and a

set of good distributed performance monitoring system of cloud platform is developed

according to the characteristics of the rapid development of cloud platform. The whole

system can be divided into data acquisition unit, real-time alarm unit, historical data

storage unit and global control unit. The specific implementation process of the main

functional units is given. Finally, the system is tested. The experimental results show that

the consistent hash algorithm has a good balance effect in the distributed monitoring

system.

1. Introduction

It is very important to build a distributed monitoring system in the cloud platform environment.

The system needs to be able to scale horizontally with the development of the cloud platform,

without running bottlenecks, and the deployment configuration should be simple enough [1-2]. It

can monitor the usage of various resources, locate the occurrence of various anomalies in real time,

and notify fault alarms in various ways. At the same time, historical data can be persistently stored,

which can be used to analyze and understand the historical operation of various components of the

platform [3-4].

In the era of Internet information, thanks to the rapid changes in technology and the surge in the

amount of information, the development of Internet companies is in full swing. How to survive and

Distributed Processing System

29

develop in an increasingly competitive environment is a challenge that every Internet company

needs to face. [5-6]. Mettler M proposes a decentralized monitoring architecture for large-scale

multi-block MPSoCs. To minimize the performance and power consumption overhead of RV, a

lightweight and non-intrusive hardware solution is proposed. It features a new dedicated trace

interconnect that assigns and classifies detected events based on timestamps. Each tile monitor has a

consistent view of globally ordered event traces that can verify the behavior of the target application

using logic and timing requirements [7]. Kazemi Z implements and embeds advanced monitoring

algorithms directly into the DCS structure for the first time. Thus, the need for an additional

computer connected to the DCS will be eliminated, which brings several advantages from a

performance perspective. In the proposed method, the advanced monitoring technique is first

simplified and divided into several functions. Next, Dynamic Link Libraries (DLLs) are created and

used to quickly execute different functions in DCS. Finally, using the generated DLL and defining

functions in WinCC, the monitoring algorithm is executed in real time [8]. Building a low-cost,

high-performance, scalable distributed monitoring system is of great significance for providing

efficient and stable data forwarding, storage, and analysis services [9].

With the continuous increase in the area of the monitoring system and the complexity of the

business, the traditional single-server architecture can no longer meet the system development

requirements. Starting from the basic frame of the monitoring system, this paper proposes a fully

integrated, hybrid architecture distributed system, and designs a load balancing strategy according

to the characteristics of the monitoring system itself. The general definition and performance

characteristics of the distributed server cluster of the monitoring system are designed. All widgets

can be deployed on different devices in a distributed manner, and can be scaled horizontally through

cluster deployment. The monitoring system of distributed server cluster architecture proposed in

this paper has good research significance and technical value for improving the overall performance

and service quality of the monitoring system.

2. Research on the Application of Consistent Hash Algorithm in Distributed Monitoring

System

2.1. Distributed Framework

The distributed structure of the decentralized and fully symmetric architecture uses the idea of

the consistent hash algorithm to locate the physical location of the file in the storage node, thereby

canceling the role of Master. As shown in Figure 1, the entire system has only one role as a storage

node, and does not distinguish between metadata and data blocks. All data requests are obtained

through the calculation of consistent hashing. This architecture avoids single point of failure and

makes data more evenly distributed on different nodes [10-11].

In this paper, the consistent hash algorithm of virtual nodes is adopted, which introduces the

concept of virtual nodes and dynamically determines the number of virtual nodes according to the

current state of the server, so as to achieve the purpose of evenly distributing server resources [12].

Using the consistent hash algorithm of virtual nodes, the mapping relationship between the ordinary

consistent hash algorithm and the key is divided into two steps:

1) Calculate the mapping relationship between the key and the virtual node;

2) Query the real physical node corresponding to the key according to the mapping relationship

between the virtual node and the physical node [13-14].

Distributed Processing System

30

Figure 1. Decentralized structure

In the aspect of the corresponding allocation between virtual nodes and physical nodes, the

concept of dynamic weight is introduced. The dynamic weight of a server s is determined by its

current load status [15]. Select the server with the most load as the baseline wbase., and other

servers to be selected are compared with wbase to obtain wn, and the specific calculation is shown

in formula (1).

)1/()1(basenbasen PPww  (1)

Assign n*E (where E is the average multiple of virtual nodes) nodes to physical servers {S1,

S2,..., Sn} according to weights {W1, W2,..., Wn}, and their corresponding virtual nodes The

number is {N1, N2,..., Nn}. Since the hash has good dispersion, the interval  of the virtual node

corresponding to the physical machine Sm is shown in formula (2):

],[
1

1

1 



m m

ii NN
 (2)

2.2. Overall Architecture Model

Figure 2 shows the overall architecture of the entire distributed monitoring system:

Agent: deployed on all nodes that need to collect data. This module periodically collects the

built-in general monitoring indicators of the node where it is located, and runs the collection plug-in

to collect extended indicators [16-17]. And it can realize automatic configuration without manual

intervention and report data to the Deliver node for subsequent data forwarding operations. The

module has high execution efficiency and will not affect the performance of the monitored

equipment.

Deliver: Use the consistent hashing algorithm to distribute the indicators collected and reported

by all agents evenly and efficiently to the real-time alarm module and the historical data storage

module for subsequent alarm judgment and data persistence. In order to achieve high availability of

historical data storage, the system implements a total of two consistent hashing algorithms to

Node 1 Node 2

Node 3

Node 4

key

key

key

key

Distributed Processing System

31

achieve double writing of data. When a cluster fails, it will not affect the reading of the entire

system data [18].

Figure 2. Overall architecture diagram

3. Investigation and Research on the Application of Consistent Hash Algorithm in Distributed

Monitoring System

3.1. Real-time Monitoring of Data

Fig. 3 is the realization frame diagram of the business data real-time monitoring system.

Figure 3. Sub-modules of the real-time monitoring system for business data

global management

module

Real-time alarm module Historical data storage module

deliver

Consistent hashing

Consistent hashing

Agent

database

storage

Alarm monitoring module

Business data

preprocessing and queuing

module

interface

display

data source

Distributed Processing System

32

In this paper, the data source is generated by the program, and multiple data sources are

introduced to generate data at the same time. Each data source is generated in the way of Poisson

distribution. See the generation method. When the business data in the ISN reaches the business

layer through the transport layer, it is in the form of data frames. Therefore, the business data needs

to be preprocessed when stored in the database or through the alarm detection module. As a

distributed and parallel network, the ISN will have various The business data of the level arrives at

the business layer at the same time. The business data preprocessing and queuing module mainly

completes the analysis of the generated data frame, and realizes the interpretation of the messages in

the data frame according to the regulations of the business layer on the business data frame. After

the interpretation is completed, according to the priority carried in the data frame, it enters the

priority queuing module, which is mainly used to control the arrival order of data and perform

sequential uploading. At the same time, the data that has been analyzed will be displayed on the

interface in real time, that is, the real-time monitoring function of the whole network data will be

realized.

The alarm detection module detects and filters the uploaded data according to the information

carried by the arriving data and pre-agreed rules. If the data is identified as alarm data, an alarm is

generated and an administrator is notified. At the same time, the alarm data will be displayed on the

interface in real time at the same time, that is, the real-time monitoring function of the alarm data is

realized.

3.2. Performance Test

Due to the limited number of SIP devices, this paper uses the simulated terminal written to test

the performance of the distributed server cluster system. The simulation terminal program is divided

into a SIP client simulation program and a SIP device simulation program. Both of them have the

functions of registration, login and heartbeat information. The heartbeat information is sent once

every 20s. Simulates end devices to send real-time requests. Since the load balancing algorithm of

the server cluster is a static algorithm, the SIP device simulation program is set to not send data to

the server for the convenience of testing; in addition, the authentication function of the central

signaling control server is also removed. In this paper, 300 SIP client simulation programs are used

to initiate real-time requests to 300 SIP devices. After 2 minutes, the number of registered SIP

terminals and the number of SIP session tasks on the central signaling control server and service

data server are respectively checked.

4. Implementation and Analysis of Consistent Hash Algorithm Applied in Distributed

Monitoring System

4.1. Consistent Hash Implementation

In the Deliver workflow, the Agent sends the built-in monitoring indicators and extended

monitoring indicators to the Deliver module through RPC and HTTP methods. The first job for

Deliver is to parse the monitoring indicators, calculate their hash values, and rearrange the relevant

data. Then put it into the queue of the corresponding receiving node for subsequent sending.

First, the Deliver module calls the initHashRing() function to initialize the consistent hash ring.

This function internally passes the judgment cluster and storage cluster address information in the

configuration file to the two sub-functions compareHashRing and storageHashRing. Take

compareHashRing as an example, after receiving the compareAddrs array, take out the IP address of

Distributed Processing System

33

each backend receiving node, and convert it into a string type for hash value calculation. The

calculation of the hash value uses the 32-bit cyclic redundancy check algorithm crc32. Each

hashkey returned by the calculation is stored in an array and sorted, and each backend IP address

and corresponding hashkey are stored in the hashkeyMap.

The next step will start generating the hashRing. The generation of the hash ring calls the open

source consistent library of stathat company. The library efficiently implements methods related to

consistent hashing algorithms, and deeply encapsulates the underlying implementation of related

data structures. First, use newConsistentHashNodeRing() to generate a blank hash ring, specify the

ring size and the virtual node multiple replicasNum, and use the setNode() method to add the

above-generated hashkey array elements to the hash ring one by one. At this point, the operation of

adding all Compare backend instances to the consistent hash ring is completed. Storage instances

are implemented the same way.

After initializing the hash ring operation, Deliver enters the data forwarding phase. Deliver

parses each received monitoring indicator, obtains the corresponding endpoint value, metric value,

and tag value, and combines the three to generate a string representing the monitoring indicator.

Also perform 32-bit cyclic redundancy check on this key to get a unique hash value hashkey, call

the getNode() method to get the hashkey value of the nearest node on the hash ring, and finally read

the hashkeyMap to get the corresponding back-end node IP address, and send this monitoring

indicator data to the corresponding sending queue.

4.2. Performance Analysis of the System

Table 1 shows 300 SIP device simulation programs and 300 SIP client simulation programs, and

a total of 600 SIP simulation terminals are finally registered with the central signaling control server

distribution diagram. Because the configurations of the three central signaling control servers are

basically the same, the number of registered SIP terminals on Node1, Node2, and Node3 in the

figure is also relatively average. The test results show that the central signaling server cluster

designed in this paper has a good load balancing effect.

Table 1. Analysis of load balancing effect

server
The number of SIP sessions of the

service data server

Number of registered SIP terminals in the central

signaling control server

Node1 211 163

Node2 189 158

Node3 200 179

Figure 4 shows the distribution of 400 SIP sessions on the service data server. It should be noted

that the 400 SIP sessions here are counted based on the SIP client simulation program. Since the SIP

client simulation program randomly sends real-time requests to the 400 SIP device simulation

programs, there are 400 SIP device simulation programs. Some did not receive a request, while the

rest of the SIP emulator took on at least one request. As can be seen from the figure, the number of

SIP sessions on the three service data server nodes is roughly the same, indicating that the service

data server cluster in this paper also has a good balance effect.

Distributed Processing System

34

Figure 4. Session distribution map and terminal registration distribution

5. Conclusion

This paper gives the design, implementation and performance analysis of the data monitoring

system, and there are some follow-up work that can be optimized: For the performance analysis of

the single-node system and the over-node system, it is necessary to increase the analysis parameters.

This paper only analyzes the load rate at present., you can further study such as packet loss rate,

data migration rate, etc. When analyzing the load balancing scheduling algorithm, only the load

balancing scheduling algorithm of the consistent hash algorithm is used, which can increase the

comparison of some other methods and improve the persuasiveness of the article. When

implementing the data monitoring system, due to the limitation of experimental conditions, the

scale and data volume of the data monitoring system built in this paper are small, and the

real-time/timing synchronization module realized may have potential data consistency problems.

The alarm detection module has not been implemented yet and needs to be optimized later.

Node1

Node2

Node3

value

se
rv

e
r

Number of registered SIP terminals in the central signaling control server

The number of SIP sessions of the service data server

Distributed Processing System

35

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Katsaros D. Distributed ledger technology: the science of the blockchain (2nd ed.). Computing

reviews, 2018, 59(11):596-597.

[2] Mendelson G, Vargaftik S, Barabash K, et al. AnchorHash: A Scalable Consistent Hash.

IEEE/ACM Transactions on Networking, 2020, PP(99):1-12.

[3] Thaiyalnayaki S, Sasikala J, Ponraj R. Indexing Near-Duplicate Images In Web Search Using

Minhash Algorithm. Materials Today: Proceedings, 2018, 5(1):1943-1949.

https://doi.org/10.1016/j.matpr.2017.11.297

[4] Jose C. Document Security System Using Improved Hash Algorithm on Pre-processing

Operation. Journal of Advanced Research in Dynamical and Control Systems, 2019,

11(11-SPECIAL ISSUE):972-978.

[5] Kumar M S, Pvrd P, Rao. Advanced SHA-256 Algorithm for Device to Device Communication.

International Journal of Advanced Science and Technology, 2020, 29(7):1189-1191.

[6] Santra R, Obermeyer M. A first encounter with the Hartree-Fock self-consistent-field method.

American Journal of Physics, 2020, 89(4):426-436. https://doi.org/10.1119/10.0002644

[7] Mettler M, Mueller-Gritschneder D, Schlichtmann U. A Distributed Hardware Monitoring

System for Runtime Verification on Multi-Tile MPSoCs. ACM Transactions on Architecture

and Code Optimization, 2020, 18(1):1-25. https://doi.org/10.1145/3430699

[8] Kazemi Z, Safavi A A, Pouresmaeeli S, et al. A practical framework for implementing

multivariate monitoring techniques into distributed control system. Control Engineering

Practice, 2019, 82(JAN.):118-129.

[9] Ciminello M. Distributed Fiber Optic for Structural Health Monitoring System Based on

Auto-Correlation of the First-Order Derivative of Strain. IEEE sensors journal, 2019,

19(14):5818-5824. https://doi.org/10.1109/JSEN.2019.2903911

[10] Salih H S, Egorov S Y. Development Of A Monitoring System For Scheduled Works At

Distributed Facilities. Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta,

2020, 26(1):056-063.

[11] Mohammed A, Hu B, Hu Z, et al. Distributed Thermal Monitoring of Wind Turbine Power

Electronic Modules Using FBG Sensing Technology. IEEE Sensors Journal, 2020, PP(99):1-1.

[12] Ciminello M. Reliability of structural health monitoring system based on distributed fiber optic

and autocorrelation of the first order derivative of strain. IEEE Sensors Journal, 2019,

PP(99):1-1.

[13] Monsberger C M, Lienhart W. Design, Testing, and Realization of a Distributed Fiber Optic

Distributed Processing System

36

Monitoring System to Assess Bending Characteristics Along Grouted Anchors. Journal of

Lightwave Technology, 2019, PP(99):1-1. https://doi.org/10.1109/JLT.2019.2913907

[14] Masouros D, Xydis S, Soudris D J. Rusty: Runtime interference-aware predictive monitoring

for modern multi-tenant systems. IEEE Transactions on Parallel and Distributed Systems, 2020,

PP(99):1-1. https://doi.org/10.1109/TPDS.2020.3013948

[15] Alfredo, Güemes, Antonio, et al. Simulation Tools for a Fiber-Optic Based Structural Health

Monitoring System. Transactions of Nanjing University of Aeronautics and Astronautics, 2018,

v.35(02):5-11.

[16] Charapko A, Ailijiang A, Demirbas M, et al. Retroscope: Retrospective Monitoring of

Distributed Systems. IEEE Transactions on Parallel and Distributed Systems, 2019,

30(11):2582-2594. https://doi.org/10.1109/TPDS.2019.2911944

[17] Abdurakhmanov A S, Fedorova V A. Intellectual mobile system for monitoring environment in

the premises. Radio Industry (Russia), 2018, 28(4):41-46.

[18] Sancho J I, Almandoz I, Barandiaran M, et al. Scalable Wireless Wearing Monitoring System

for Harsh Industrial Environment. IEEE Transactions on Industrial Electronics, 2020,

PP(99):1-1. https://doi.org/10.1109/TIE.2020.3053892

