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Abstract: In dynamic environments, the traditional A* algorithm is apt to suffer from 

issues such as low search efficiency, unnecessary turning points, close proximity to 

obstacles, and no obstacle avoidance capability in global path planning. To address these 

issues, this paper presents a new path planning method that integrates an optimized A* 

algorithm and the Dynamic Window Approach (DWA) to enhance the mobile robot's 

navigation efficiency and obstacle avoidance ability in dynamic environments. During the 

global path planning process, multi-dimensional optimizations are incorporated into the A* 

algorithm. They include optimizing the cost function, taking multi-round polyline 

optimization approaches, and avoiding obstacle vertices, which successfully reduce 

unnecessary turning points in the path, reduce the frequency of turns, smooth the path 

curvature, and greatly enhance the search efficiency of the algorithm. In the local obstacle 

avoidance stage, the distance factor of dynamic obstacles is incorporated into the DWA 

evaluation function system to enhance the robot's ability to avoid dynamic obstacles. To 

verify the effectiveness of this method, a series of simulation experiments was conducted 

in a grid map environment built on the MATLAB platform. Comparative experiments of 

the classic A* algorithm, improved A* algorithm, and the proposed fusion algorithm were 

conducted under various dynamic obstacle collision threat scenarios. The experimental 

results show that this paper's fusion algorithm has higher path planning quality, obstacle 

avoidance success rate, and real-time performance than traditional algorithms, realizing 

stable and reliable navigation of paths. 

1. Introduction  

With the generalization and speeding-up of the development of artificial intelligence and 
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automation technology, applications of mobile robots
[1]

 have also extended widely into industrial 

production, intelligent warehousing, and service robots. Path planning
[2]

 is the core module of 

autonomous navigation of a mobile robot, and its quality decides the working efficiency and 

environmental adaptability of the robot. Since in complicated and ever-changing situations how 

effective coordination of global path planning and local obstacle avoidance may be achieved is a 

trending current matter under study, the traditional A* algorithm
[3]

 has been widely used to perform 

path planning in static situations due to its heuristic search strategy and global planning capability. 

However, A* is not responsive to dynamic obstacles and has high computational complexity and is 

difficult to meet the requirement of real-time obstacle avoidance. The Dynamic Window Approach 

(DWA)
[4]

 takes into account the kinematic constraints of robots and their outstanding local obstacle 

avoidance for static obstacles and is thus widely employed in real-time navigation tasks. However, 

DWA lacks global view of the entire path and is prone to being caught in local optima. Therefore, 

this paper proposes hybridizing the A* algorithm and DWA
[5]

 to leverage A* global planning 

qualities and DWA local obstacle avoidance capabilities. This hybrid can fundamentally enhance 

the navigation ability of mobile robots in complex environments by enabling more robust path 

planning and obstacle avoidance. 

In recent years, scholars have proposed many improved algorithms to address the problems 

encountered in mobile robot path planning. Zhang D
[6] 

improved the cost function and integrated the 

artificial potential field method, resulting in a significant reduction in the number of path turning 

points. Sang W
[7] 

introduced the obstacle rate to optimize the heuristic function of the A* algorithm 

and dynamically adjusted the weights of the DWA evaluation function. Zhang C
[8]

 logarithmically 

weighted the heuristic function of the A* algorithm and designed a DWA fuzzy controller, greatly 

reducing the path deviation. Song B
[9] 

Proposed to integrate the improved Ant Colony Optimization 

(ACO) algorithm with the DWA algorithm to enhance the performance of global and local path 

planning in dynamic environments. 

Although the existing research has made some achievements in improving the search efficiency 

of the A* algorithm, reducing the number of path turning points, improving the accuracy of global 

path planning, and integrating local obstacle avoidance algorithms, in dynamic complicated 

environments, issues such as slow response of the path, instability of obstacle avoidance, and 

sensitivity to local optimal solutions still dominate. To enhance the path planning capability of 

mobile robots in dynamic environments further, this paper presents an enhanced A* algorithm 

integrated with the Dynamic Window Approach (DWA) to create a path planning scheme. In the 

global planning stage, this approach increases search effectiveness, path quality, and safety of 

global paths. At the local planning stage, it takes the safety distance in static environments into 

consideration and uses particular avoidance strategies for dynamic ones. With such integration, 

mobile robots can achieve a global path with fewer turning points and sufficient safety, apart from 

fast and accurate avoidance of static and dynamic obstacles during movement. 

2. Traditional A* and DWA Algorithms 

2.1 Traditional A* Algorithm 

Traditional A* algorithm is a heuristic best-first search method, and its core cost function is: 

𝑓(𝑛) = 𝑔(𝑛) + 𝑕(𝑛)#(1)  
where f represents the actual cost from the start node to the current node, and h denotes the 

heuristic estimate from the current node to the goal. In this paper, to improve the accuracy and 

continuity of the planned path, both the actual cost and the heuristic function are defined using the 

Euclidean distance
[10]

: 
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𝑔(𝑛) = √(𝑥𝑛 − 𝑥𝑔𝑜𝑎𝑙)
2

+ (𝑦𝑛 − 𝑦𝑔𝑜𝑎𝑙)
2

#(2)  

                    

𝑕(𝑛) = √(𝑥𝑛 − 𝑥𝑔𝑜𝑎𝑙)
2

+ (𝑦𝑛 − 𝑦𝑔𝑜𝑎𝑙)
2

#(3)  

                    

The distance measurement method used in the A* algorithm can more accurately reflect the true 

spatial distance between nodes. The A* algorithm conducts path search by maintaining an Open 

List and a Closed List. Initially, the start node is added to the Open List, and its cost function g is set 

to 0. The heuristic function f is then calculated. Subsequently, the node n with the smallest f value in 

the Open List is selected as the current node to be expanded. If n is the goal node, it indicates that a 

path has been found, and the complete path can be constructed by backtracking through the parent 

nodes. Otherwise, n is moved to the Closed List, and all adjacent nodes are processed. If an adjacent 

node already exists in the Closed List, it is skipped. If an adjacent node is not in the Open List, it is 

added to the Open List, and its parent node is recorded as n. If the adjacent node is already in the 

Open List, the new g value is compared; if it is better, the corresponding g and f values for the 

parent node are updated. This process is repeated until either the goal node is expanded or the Open 

List becomes empty, thereby completing the path search. 

2.2 Traditional Dynamic Window Approach (DWA) 

The core idea of the Dynamic Window Approach (DWA) algorithm is the velocity space (v,w), 

sample multiple velocity combinations, predict the motion trajectories of each combination over a 

short period of time, and score these trajectories using a predefined evaluation function.
[11]

 The 

optimal trajectory is then selected, and its corresponding velocity command (v, w) is used to drive 

the robot forward. The restrictions that the sampled velocities must satisfy include: 

𝑉𝑠 = *(𝑣, 𝑤)|𝑣 ∈ ,𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥- ∧ 𝜔 ∈ ,𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥-+#(4)  

where 𝑉𝑠 is the set of velocities that the robot can achieve, 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥  represent the 

minimum and maximum linear velocities of the robot, and 𝜔𝑚𝑖𝑛  and 𝜔𝑚𝑎𝑥  represent the 

minimum and maximum angular velocities of the robot. 

𝑉𝑑 = *(𝑣, 𝑤)|𝑣 ∈ ,𝑣𝑐 − 𝑣̇𝑏 △ 𝑡, 𝑣𝑐 + 𝑣̇𝑎 △ 𝑡-⋀𝜔 ∈ ,𝜔𝑐 − 𝜔̇𝑏 △ 𝑡, 𝜔𝑐 + 𝜔̇𝑎 △ 𝑡-+#(5)  

where 𝑉𝑑 is the set of velocities that are limited by the motor's acceleration and deceleration 

capabilities, 𝑣̇𝑎 and 𝑣̇𝑏 represent the maximum acceleration and maximum deceleration, and 𝜔̇𝑎 

and 𝜔̇𝑏 represent the maximum angular acceleration and minimum angular deceleration. 

𝑉𝑎 = {(𝑣, 𝜔)|𝑣 ≤ √2 · 𝑑𝑖𝑠𝑡(𝑣, 𝜔) · 𝑣̇𝑏 , 𝜔 ≤ √2 · 𝑑𝑖𝑠𝑡(𝑣, 𝜔) · 𝜔̇𝑏} #(6)  

where 𝑉𝑎 is the set of velocities that are limited by obstacle constraints. The DWA actually uses 

the intersection of three sets, 𝑣𝑑𝜔 = 𝑣𝑠 ∩ 𝑣𝑑 ∩ 𝑣𝑎 . Only velocities that simultaneously satisfy 

physical constraints, motor performance constraints, and collision safety constraints are considered 

valid velocity candidates. Based on the trajectory predicted by the kinematic model
[12]

, an 

evaluation function is introduced to score and select the optimal trajectory. The evaluation function 

is as follows: 

𝐺(𝑣, 𝜔) = 𝜎(𝛼 · 𝑕𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝜔) + 𝛽 · 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝛾 · 𝑣𝑒𝑙(𝑣, 𝜔))#(7)  

where the purpose of the normalization function σ is to unify the scoring scale, making various 

evaluation metrics numerically comparable to select the optimal speed command. The heading(v, ω) 

function serves as the evaluation function for the azimuth angle, used to assess the angular 

difference between the predicted trajectory endpoint orientation and the direction of the target point 

for a robot given velocity (v, ω). The dist(v, ω) function is a distance rating function that indicates 
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the distance between the robot and the nearest obstacle when it moves to the end of the current 

predicted trajectory. The vel(v,ω) function acts as a velocity rating function reflecting the magnitude 

of the current linear velocity. This set of functions collectively contribute to the comprehensive 

evaluation of the robot's movement status, thereby ensuring the selection of the most suitable path 

and speed parameters to achieve efficient and safe navigation towards the target position. 

3.  Global Path Planning Based on an Improved A* Algorithm 

3.1 Improved Cost Function 

In the traditional A* algorithm, the heuristic function 𝑕(𝑛) typically considers only the distance 

between the current node and the goal, often neglecting the probabilistic distribution of obstacles in 

the environment. As a result, in complex environments with densely distributed obstacles, the 

planned path may traverse high-risk areas. To address this issue, an obstacle probability P is 

introduced into the path cost calculation to adjust path selection. The obstacle probability refers to 

the likelihood of encountering obstacles along the path from the current node to the goal. The 

regional obstacle probability is defined as: 

𝑃𝑜𝑏𝑠 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑃𝑜𝑖𝑛𝑡𝑠

𝑇𝑕𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
#(8)  

Furthermore, given a node 𝑛(𝑥𝑛, 𝑦𝑛) and the target node 𝑛(𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡), the search area 

for path planning is defined as a rectangular region, the formula for the district boundary is as 

follows: 

{
𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑥𝑛, 𝑥𝑡𝑎𝑟𝑔𝑒𝑡) − 0.8

𝑥𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑥𝑛, 𝑥𝑡𝑎𝑟𝑔𝑒𝑡) + 0.8
#(9)  

{
𝑦𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑦𝑛, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡) − 0.8

𝑦𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑦𝑛, 𝑦𝑡𝑎𝑟𝑔𝑒𝑡) + 0.8
#(10)  

The total number of grids within the region is calculated using the following formula: 

{
𝑁𝑥 = |𝑥𝑛 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡| + 1

𝑁𝑦 = |𝑦𝑛 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡| + 1
#(11)  

By incorporating obstacle probability, the heuristic function takes into account not only the path 

length but also the safety of the path. The improved heuristic function introduces a weighting of the 

heuristic cost by incorporating the probability of obstacles. The formula is as follows: 

𝐹(𝑛) = 𝑔(𝑛) + (1 + 𝑒−𝑝∗𝑃𝑜𝑏𝑠) · 𝑕(𝑛)#(12)  

where p is a parameter that adjusts the influence weight of obstacle probability. The coefficient 

preceding the heuristic term renders the heuristic function sensitive to obstacle probability. When 

𝑃𝑜𝑏𝑠 is high, 𝑒−𝑝∗𝑃𝑜𝑏𝑠 decreases, causing the coefficient to approach 1. This reduces the weight of 

the heuristic term, compelling the algorithm to prioritize actual cost and thereby facilitate avoidance 

of high-risk regions. 

3.2 Multi-round Polyline Optimization 

The preliminary path generated by the conventional A* algorithm often contains numerous 

redundant nodes and frequent turns, which increases the path length while compromising its 

executability and continuity. To address these limitations, this paper proposes a multi-stage polyline 

optimization approach to eliminate redundant nodes, reduce the number of turns, shorten the overall 

path length, and enhance path smoothness. 
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3.2.1 Redundant Point Removal 

 Given the original path point sequence 𝑃 = *𝑃1, 𝑃2, … , 𝑃𝑛+, if a group of three consecutive 

points 𝑃𝑖−1 , 𝑃𝑖 , 𝑃𝑖+1  are collinear, the middle point 𝑃𝑖  can be removed. The criterion for 

determining collinearity is as: 

|
𝐴 · 𝑏⃗⃗

||𝑎⃗|| · ||𝑏⃗⃗||
| < 𝜖#(13)  

Then the three points are approximately collinear, and 𝑃𝑖 can be removed. 

3.2.2 Connectivity Check 

Building upon the initial optimization, we further consider any pair of path points 𝑃𝑖 and a 

subsequent 𝑃𝑗(𝑗 > 𝑖). If the straight-line segment connecting them is obstacle-free, all intermediate 

points can be safely eliminated. The obstacle detection employs the point-to-line distance metric: 

𝐷 =
|(𝑦𝑗 − 𝑦𝑖)𝑥𝑜 − (𝑥𝑗 − 𝑥𝑖)𝑦𝑜 + 𝑥𝑗𝑦𝑖 − 𝑦𝑗𝑥𝑖|

√(𝑦𝑗 − 𝑦𝑖)
2

+ (𝑥𝑗𝑥𝑖)
2

#(14)
 

The direct path between nodes is validated as obstacle-free when the perpendicular distance d 

from every obstacle point 𝑂 = (𝑥𝑜 , 𝑦𝑜) to line segment 𝑃𝑖𝑃𝑗 maintains d > D (safety boundary). 

3.2.3 Reverse Path Re-optimization 

Since the polyline optimization operates in a locally greedy manner, it may only achieve 

unidirectional optimality due to its sequential traversal. To eliminate suboptimal nodes caused by 

processing order, we apply the connectivity-based optimization strategy again to the reversed path. 

This bidirectional optimization approach ultimately yields a path with significantly improved 

turning points and reduced total length. 

3.3 Avoidance of Obstacle Vertices 

 In the traditional A* algorithm, the search process often generates paths that closely follow 

obstacle vertices, thereby reducing the safety margin and increasing the risk of collision during 

actual execution. To address this issue, this paper proactively excludes nodes adjacent to obstacle 

vertices during the node expansion phase, ensuring that the generated path maintains a safe distance 

from obstacles. The core idea is expressed as follows: 

𝒩𝑠𝑎𝑓𝑒 = { 𝑛 ∈ 𝒩𝑒𝑥𝑝𝑒𝑛𝑑 ∣
∣ ∀𝑣 ∈ 𝒱𝑜𝑏𝑠,  ∥ 𝑛 − 𝑣 ∥∞ > 1 } #(15)  

where 𝒩𝑒𝑥𝑝𝑒𝑛𝑑 is the set of candidate nodes for expansion, 𝒱𝑜𝑏𝑠 is the set of obstacle vertices, 

and ∥ 𝑛 − 𝑣 ∥∞ denotes the Chebyshev distance between node 𝑛 and obstacle vertex 𝑣. A node is 

added to the safe expansion set 𝒩𝑠𝑎𝑓𝑒 only if its distance from all obstacle vertices exceeds 1. This 

method effectively increases the safety margin of the path and reduces the likelihood of 

edge-hugging paths. 
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4 Local Path Planning by Integrating Improved A and Enhanced DWA 

4.1 Improved Evaluation Function 

In this paper, we enhance the traditional Dynamic Window Approach (DWA) evaluation function 

by introducing a consideration for the distance from dynamic obstacles. The addition of a dynamic 

obstacle component enables robots to proactively avoid obstacles that may move into their planned 

path, thus preventing collisions. The extended evaluation function now includes four components: 

heading angle towards the goal, distance from static obstacles, velocity magnitude, and distance 

from dynamic obstacles. All components are normalized across all candidate velocity combinations 

to eliminate the influence of units and scale differences, specifically as: 

𝐹̃𝑘(𝑖) =
𝑓𝑘(𝑖)

∑ 𝑓𝑘(𝐼)𝑁
𝑖=1

#(16)  

where k denotes the type of component, i represents the i-th velocity combination, and N is the 

total number of alternative velocity combinations. After normalization, each component is weighted 

and summed to obtain the final evaluation score. The specific form of the evaluation function is as 

follows: 

𝐹𝑖 = 𝛼 · 𝑓𝑕𝑒𝑎𝑑𝑖𝑛𝑔(𝑖) + 𝛽 · 𝑓𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒(𝑖) + 𝛾 · 𝑓𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝑖) + 𝛿 · 𝑓𝑑𝑦𝑛𝑎𝑚𝑖𝑐(𝑖)#(17)  

𝑓𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
𝑚𝑖𝑛

𝑖
||𝑃𝑒𝑛𝑑 − 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐,𝑗(𝑡𝑒𝑛𝑑)|| #(18)  

where Equation 18 represents the minimum distance between the endpoint of the predicted 

trajectory 𝑃𝑒𝑛𝑑  and the position of the j-th dynamic obstacle at the prediction time 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐,𝑗(𝑡𝑒𝑛𝑑). In this formula, 𝐹𝑖 stands for the overall evaluation value of the i-th velocity 

combination, with the highest scoring i being selected as the control output for the current moment. 

The parameters α, β, γ and δ represent the weights assigned to each respective component after 

normalization. 

4.2 Integrated Algorithm 

 
Figure 1: Flowchart of the Improved A and DWA Fusion Algorithm 
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5 Verification of the Algorithm through Simulation 

To verify the path planning performance of the proposed improved A* algorithm and its dynamic 

obstacle avoidance effect after integration with the DWA, a simulation environment was built based 

on the MATLAB 2024b platform, and multiple sets of comparative experiments were designed. The 

improvements of the improved A* algorithm in terms of path length, planning efficiency, and path 

smoothness were evaluated. Subsequently, the improved A* algorithm was integrated with the DWA 

that uses the improved evaluation function to achieve coordinated control for global path planning 

and local dynamic obstacle avoidance. 

5.1 Comparison of the A* Algorithm Before and After Improvement 

A grid map with a resolution of 1×1 was constructed in MATLAB. The map uses different 

shapes and colors to represent specific functions: triangles represent the start node, circles represent 

the goal node, gray grids represent obstacles, and white grids represent free-moving areas. 

In Figure 2 and Figure 3, the comparison results of running the traditional A* algorithm and the 

improved A* algorithm on a 20×20 grid map are shown, with no path smoothing applied. The 

traditional A* algorithm took 0.025 seconds, with a turning degree of 315, 7 turns, a path length of 

29, and 207 nodes expanded. In contrast, the improved A* algorithm took 0.02 seconds, with a 

turning degree of 263, 4 turns, a path length of 30, and 85 nodes expanded. The specific data can be 

found in  

 

Table 1. As seen, the improved A* algorithm reduced the time by 20%, the number of turns by 

42%, and the number of expanded nodes by 58.9%. 

Additionally, Figure 4 and Figure 5 show the comparison results on a 30×30 grid map, with 

detailed data in Table 1. In this scale, the improved A* algorithm reduced the time by 11%, the 

turning degree by 82%, the number of turns by 44%, and the number of expanded nodes by 46%. It 

is worth noting that the improved A* algorithm did not exhibit the phenomenon of vertex diagonal 

crossing obstacles on both map sizes. Overall, the improved A* algorithm demonstrated superior 

performance in path optimization. 
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Figure 2: Path of the Traditional A* 

Algorithm on a 20×20 Map 

 
Figure 3: Path of the Improved A* 

Algorithm on a 20×20 Map 

 
Figure 4: Path of the Traditional A* 

Algorithm on a 30×30 Map 

 
Figure 5: Path of the Improved A* 

Algorithm on a 30×30 Map 

 
 

Table 1: Comparison Between Traditional and Improved A* Algorithms 

 Grid Size 
Planning 

Time(s) 

Total 

Turning 

Angle 

Number 

of Turns 

Path 

Length(

m) 

Number 

of Visited 

Nodes 

Traditional A* 20*20 0.025 315 7 29 207 

Improved A* 20*20 0.02 263 4 30 85 

Traditional A* 30*30 0.009 405 9 42 251 

Improved A* 30*30 0.008 72 5 41 134 

5.2 Dynamic Environment Path Planning with Improved A* Algorithm Integrated with DWA 

This experiment investigates the obstacle avoidance response of a mobile robot in dynamic 

environments by setting up three typical interaction scenarios: intersection, crossing, and head-on. 

The goal is to validate the obstacle avoidance ability of the improved A* algorithm integrated with 

Dynamic Window Approach (DWA) in dynamic environments. As shown in the figures below, 

Figure 6 demonstrates the path trajectories of the mobile robot and dynamic obstacles in a grid map 

during the crossing scenario. It is clearly observed that the robot effectively avoids the dynamic 

obstacles during the crossing phase. Figure 7 shows the changes in the robot’s linear velocity and 

angular velocity during this process, where the blue curve represents the linear velocity and the red 

curve represents the angular velocity. The results show that as the robot approaches the crossing 

point, its linear velocity accelerates to a certain value, rapidly decelerates when encountering 

obstacles, and then accelerates again. The angular velocity alternates between positive and negative, 

indicating that the robot performs multiple steering maneuvers during the obstacle avoidance 

process. Figure 8 shows the changes in the robot’s attitude angle. During the crossing avoidance 

phase, the attitude angle fluctuates slightly between 0.9 and 1.1, with small peak values. Overall, 

the experimental results show that the proposed improved A* algorithm integrated with DWA 

enables the mobile robot to make timely steering and detour maneuvers when encountering 

dynamic obstacles, demonstrating good dynamic obstacle avoidance ability. 
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Figure 6: Path Trajectories of the Mobile Robot and Dynamic Obstacles in the Grid Map 

 
Figure 7: Linear and Angular Velocity 

 
Figure 8: Attitude Angle 

Figure 9 and Figure 10 respectively show the trajectory of the mobile robot in the head-on and 

crossing dynamic obstacle scenarios, further reflecting the robot’s path planning and obstacle 

avoidance performance under different dynamic obstacle interaction modes. The specific 

experimental data for each scenario are summarized in Table 2. 

 
Figure 9: Crossing Path Map 

 
Figure 10: Head-on Path Map 

Table 2: Data Comparison of the Mobile Robot in Different Collision Environments 

 Time Duration (s) Path Length (m) 

Cross Collision 148.83 28.08 

Crossing Collision 128.23 27.97 

Head-on Collision 132.03 27.87 

6 Conclusion 

This paper addresses path planning and obstacle avoidance for mobile robots in complex 

dynamic environments by developing an optimal path planning scheme, fusing the improved A* 

algorithm with Dynamic Window Approach (DWA). During the global path planning step, the 

traditional A* algorithm is adopted as the foundation, with a weight adjustment mechanism of the 

heuristic function, an obstacle probability model, multi-round polyline optimization approach, and 

obstacle vertex avoidance rules being added. These steps efficiently remove a series of problems in 

traditional A* paths, such as high-density turning points, redundancy of nodes, and inability to 
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avoid obstacle vertices. Meanwhile, the efficiency of searching is significantly improved and the 

generated path is adapted to better suit the kinematic characteristics of mobile robots. With dynamic 

obstacles and unknown static obstacles coexisting in actual environments as the target, the DWA 

algorithm is applied in the local obstacle avoidance stage, and a dynamic obstacle distance factor is 

embedded into the evaluation function so that mobile robots are able to perform dynamic obstacle 

avoidance. Simulation experiments in the MATLAB environment verify that the integrated 

approach presented here can generate stable and robust path planning and dynamic avoidance of 

obstacles in mixed environments with static and dynamic obstacles. Experimental results show that 

this scheme not only avoids dynamic obstacles but also shows remarkable improvements with 

respect to path length, search efficiency, turns, and path safety. However, the scheme has not yet 

been experimented with. I will continue to expand the application of the system in path planning for 

physical robots, self-map building, and real-time path replanning, and study the deployment and 

engineering usage of the scheme on embedded hardware platforms in the future work for its further 

extensive application in practical applications such as autonomous intelligent logistics and service 

robots. 
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