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Abstract: In the face of the current global shortage of fossil energy, the greenhouse effect 

seriously affects the development of the world economy and people's health, countries are 

actively seeking new energy(NE) to replace fossil energy, in order to achieve sustainable 

economic development and curb the continuous warming of the global climate, which will 

dominate the future development. At the same time, the breakthrough of modern 

technology in comprehensive energy technology makes the urban power grid gradually 

change to electricity-based, and includes water, heat, gas and other multi-energy supply 

forms. The increase in the installed scale of renewable energy(RE) has brought many 

problems to the operation and scheduling of the power system(PS). The NEPS(NEPS) 

actively and fully accepts RE, and its power supply side contains a large number of 

intermittent and random fluctuations of RE power. The existing optimal dispatch strategies 

for PSs including RE that consider emissions do not fully consider source-load 

interaction(SLI), and ignore the deep peak regulation of units and the joint dispatch of user 

loads under the new situation. To this end, this paper analyzes the user-side characteristics 

of wind, solar and thermal power generation(PG) units through the multi-objective 

optimization(MOO) model of the cost of the NEPS, and simulates five dispatching 

scenarios on the source-load interactive platform. The PS is optimally dispatched to reduce 

the economic cost of the unit. 

1. Introduction 

The operation of the PS should follow the constraints of the physical characteristics of the power 

grid itself, the constraints of the market economy and the constraints of the environment. Compared 

with the traditional power grid, the constraints faced by the NEPS have been upgraded. The 

volatility and intermittency of NE PG and the emergence of massive active load nodes on the 

demand side increase the physical characteristics of the power grid. The demand side participates in 
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electricity market transactions and the impact of PG costs caused by carbon emissions trading, 

which changes economic characteristics and reduces EC. Emissions make environmental 

constraints more demanding than ever before [1]. Therefore, the SLI of the NEPS must ensure the 

safe, economical and environmentally friendly run of the system. 

At present, research on the key issues of SLI in NE systems has achieved good results. For 

example, some scholars have introduced multi-agent technology to establish a demand-response 

multi-agent structure for distributed and decentralized decision-making, improving decision-making 

efficiency and coordination of resources within the region. Source-load coordination optimization 

scheduling is usually based on the analysis of the distribution law of power output and load demand, 

and a balance between RE consumption and the overall operating cost of the system can be 

achieved in order to achieve the purpose of SLI, coordination and efficiency [2]. Due to the 

introduction of the market mechanism, the environmental constraints of power production are 

directly transformed into economic constraints, and the marginal benefit of carbon ER is clearer, 

which can promote grid dispatching and PG enterprises to consciously save energy and reduce 

emissions [3]. The role of the energy interactive demand-side resources of the NEPS in energy 

conservation(EC) and emission reduction scheduling is mainly to provide zero-carbon PG resources. 

Due to the rising price of carbon emissions, the transaction price of the electricity market is too high 

[4]. It can be seen that the research on SLI basically focuses on reducing carbon emissions through 

the combination of NE and PSs, which has always been the current and future research direction. 

This paper first analyzes the changes of the NEPS compared with the traditional PS, then 

proposes a SLI cost scheduling model based on MOO, and then designs a SLI platform, and 

conducts simulation scheduling experiments through this platform to analyze new Cost-optimized 

scheduling results for multiple generator sets of an energy PS. 

2. Related Algorithms 

2.1. The Fundamental Change Load Scheduling Problem of NEPS 

(1) The dispatch mode of the NEPS needs to realize the integrated coordination of PG and power 

consumption. The traditional dispatching mode mainly considers the dispatching of the PG side, 

and adjusts the output of the generator set to meet the electricity demand; and one of the most 

important features of the smart grid is the interaction between the user and the power grid. At this 

time, the load is active and changing during the system operation. Scheduling objects need to take 

into account both the generator-side units and the demand-side resources [5-6]. 

(2) The optimization goal not only needs to consider the economy, but also the benefit of energy 

saving and ER. The driving force for the development of NEPSs comes from EC and ER. However, 

because the economic attributes of PG fuels and the natural emission attributes are not unified, 

economy and EC and ER are a pair of contradictions [7-8]. In addition, the characteristics of NE PG 

determine that NE PG must be attached to conventional energy units, and the substitution benefit 

comes at the expense of the PG efficiency of conventional units, and the resource value is difficult 

to accurately measure [9]. 

2.2. Cost Analysis of Source-Load Interactive Scheduling Based on MOO 

The access of large-scale wind power(WP) and photovoltaic PG requires the adjustment of 

conventional generator sets to promote their consumption. From the perspective of the entire supply 

side, it is achieved through the coordinated output between power sources [10]. At present, there are 
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also many achievements specializing in the joint optimal dispatch of WP-thermal to solve the 

problem of economic wind curtailment. UHV realizes the centralized development of WP bases and 

the LC(LC), high-efficiency, high-efficiency bundling and safe delivery of wind/light/thermal 

power, as well as the proposal and popularization of the concept of virtual power plants [11]. 

The total cost of the coordinated output of the power supply should be the sum of the operating 

costs of all power supplies C S
, and the calculation method is as follows: 

)(4)(3)(2)(1)( TCTCTCTCTCS
           (1) 

Among them, C1, C2, C3, and C4 are the operation and maintenance costs, depreciation costs, 

fuel costs of TPUs, and conventional generator set ACs of all power sources in the research period T, 

respectively. Among them, the operation and maintenance cost of the power supply includes the 

production and operation of the unit, and the technical transformation of eliminating deficiencies. 

The calculation method needs to consider the operating hours of the unit, and the cost is the sum of 

the operation and maintenance costs of all power sources. The depreciation cost of the power source 

is related to its initial investment cost and depreciation coefficient [12]. 
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In the formula, WT, PV, TM, and HY are the initial investment costs of WP, photovoltaic, 

thermal power, and hydropower units, respectively, f
i

 is the corresponding depreciation 

coefficient, r i
 is the depreciation rate of unit type i, and bi

 is the project service life of unit type 

i. 

3. Source-Load Interactive Platform 

My country's NEPS has the characteristics of wide distribution of addresses and locations, high 

order of magnitude of transmission energy, high-speed and reliable communication scheduling 

instructions, uninterrupted real-time balance, and instantaneous spread of major faults. These 

characteristics determine that NEPS data is typical big data [ 13]. For example, with the LC 

application of RE PG units, distributed power sources and smart power equipment, hundreds of 

millions of terminal equipment power consumption data, wind speed, light intensity, temperature 

and other meteorological monitoring data in different regions and WP forecasting The large amount 

of historical data required has put forward higher requirements for automatic control of PS, 

cooperative interaction between source and load, and online analysis and decision-making [14-15]. 

Therefore, the SLI platform must be built on the basis of big data technology. As an important part 

of power big data, it can obtain knowledge and information from massive data, optimize power 

production and distribution, and promote the reform of the power industry [16]. The architecture 

design of the source-load interactive platform is shown in Figure 1. 
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The Source-Load interactive platform is mainly divided into five levels: data source, data 

collection, data storage and processing, auxiliary decision-making and display. 
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Figure 1. Source-load interactive platform 

The data source refers to the data source required for SLI, which is generally a relatively 

independent application system database, including economic data in the MIS system, 

meteorological data, real-time unit operation data in the SCADA system, and wind-solar power 

prediction data [17] . 

Data collection refers to the organic concentration of data from different application systems and 

different formats on the logical or storage medium on the premise of keeping the original 

application system unchanged, including data communication and transformation (Sqoop), and the 

collection of massive logs. (Flume), file data processing (Kettle), etc. 

The purpose of data storage and processing is to realize the integration and sharing of data, and 

to solve the problems of data redundancy and information islands among various systems within the 

power enterprise. 

Auxiliary decision-making is the process of mining the potential value of big data and forming 

decision-making alternatives. By analyzing and calculating the content of the data, higher-level 

decision-making is realized based on data-driven, artificial intelligence, data mining and other 

technologies, such as multi-objective planning, cost allocation mechanism [18]. 

Visual display is mainly to display the conclusions obtained by assisting decision-making in a 

way that is convenient for users to understand, which includes the display of LC, high-dimensional, 

multi-source, and real-time changing information in the time and space dimensions. In this way, 

managers can more intuitively and accurately understand the meaning expressed by the conclusion 

in the process of SLI, and understand the operation state of the PS [19]. 

4. Example Simulation and Analysis 

4.1. Different Scheduling Scenario Settings 

The following 5 scenarios are designed to analyze the impact of energy storage(ES) system, 
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demand response(DR), and carbon processing cost(CPC) on the consumption of wind-solar 

hydroPG. The scheduling scenarios can be carried out on the SLI platform. 

Scenes A: This scene includes wind, light, and thermal PG units, regardless of battery ES power 

stations(PS), user-side DR, and CPCs. 

Scenes B: Battery ES scene, this scene introduces battery ES power station based on Scenes A. 

Scenes C: The SLI scene. Based on Scenes A, this scene introduces a day-ahead electricity price 

type virtual response unit and an intraday incentive type virtual response unit. 

Scenes D: Low-carbon scenarios, which introduce CPCs based on Scenes A. 

Scenes E: Comprehensive scene, which simultaneously introduces battery ES PS, user-side DR, 

and CPCs. 

4.2. Basic Data 

Taking a NEPS in a certain region as an example, the system includes thermal power plants with 

an installed capacity of 1200MW, wind turbines with a capacity of 200MW and photovoltaic power 

plants with a capacity of 400MW. According this model predict the energy consumption of wind 

turbines and photovoltaic PG, and the prediction curve is shown in Figure 2. 

 

Figure 2. Forecast curve 

4.3. MOO Cost Analysis Results 

Table 1. Optimized scheduling costs for different scenarios 

 Scenes A Scenes B Scenes C Scenes D Scenes E 

TPU cost 45365 42518 25346 38693 22538 

ES power station cost none 2364 none none 2547 

DR scheduling cost none none 21742 none 22085 

Unit dispatch cost 10437 9458 2860 9214 5255 

Limit PG costs 6739 6107 1254 8475 3319 

TSC 62541 60447 51202 56382 55744 
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Table 1 shows the optimal dispatching cost for each dispatching scenario. In the basic scenario 

(Scenes A), there is no ES PS and DR participation, the thermal power unit(TPU) is in a state of 

deep peak regulation(PR), and the TPU cost and average adjustment cost(AC) are relatively high, 

respectively 453.65 million Yuan and 104.37 million yuan. Scenes B includes a battery ES system, 

which relieves the PR pressure of TPUs, reduces the output cost of TPUs accordingly, and reduces 

the average AC of the intraday stage. In Scenes C, the user-side DR virtual unit participates in 

scheduling, which improves the uncertainty of the system load in two stages, one day before and 

one day, and effectively avoids the impact of load fluctuations on system operation. The CPC is 

introduced in Scenes D. In order to realize low-carbon dispatching, the output of TPUs is limited, 

and the amount of abandoned wind and light is reduced, and the total system cost(TSC) is reduced 

by 61.59 million yuan compared with the basic scene. This shows that in the integrated dispatching 

process of SLI, considering the system The overall operating cost, actively abandoning the use of 

some RE. Scenes E integrates various factors. In the simulation results, the unit AC is reduced to 

52.55 million yuan, and the TSC is reduced by 10.87% compared with the basic scene. 

Table 2. System Load (MW) Before and After DR 

 3 6 9 12 15 18 21 24 

System load 

before DR 
441 537 624 765 563 832 610 408 

System load 

after DR 
483 515 598 684 579 766 625 433 

Table 2 shows the power load of the system before and after users participate in DR. Load 

shifting reduces the energy load , while the cost of electricity increases significantly. Load 

fluctuations, the power supply pressure on the power supply side during peak hours is alleviated, 

and electricity interest rates are significantly improved during valley hours. Combining with Table 1, 

it can be seen that the user's participation in DR effectively reduces the AC of the unit and the TSC. 

Analyze the influence mechanism of system optimization results under five scenarios, and the 

average AC and TSC under each scenario are obtained through optimization, as shown in Figure 3. 

 

Figure 3. System optimization scheduling under different degrees of certainty 

Comparing Table 1 and Figure 3, comparing the basic scenario and the comprehensive scenario 
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before and after the prediction accuracy is reduced, the multi-energy coordinated two-stage optimal 

scheduling of DR has the smallest increase in the TSC, and the unit AC is relatively lower. 

Compared with the Scenes A, the Scenes E has less influence on the total operating cost of the load 

forecast error, which indicates that the internal SLI in the day-a-day and intra-day two-phase 

internal SLI is less affected. Adding it can improve the ability of the NEPS to deal with forecast 

errors and reduce the economic cost of the unit. 

5. Conclusion 

The proportion of RE in the power grid will be higher and higher, and the planning, construction 

and management of the PS will undergo changes. After LC RE is connected, the stability and 

economic problems of the PS are NE power. A major problem to be solved urgently in the system. 

In this regard, this paper studies the SLI problem of the NEPS, and establishes a MOO model for 

the economic cost of the generator set to optimize the cost scheduling. The experimental results 

prove that the addition of the SLI can reduce the economic cost of the generator set. 
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