
Scholar Publishing Group 

International Journal of Big Data Intelligent Technology 

https://doi.org/10.38007/IJBDIT.2023.040106 

ISSN 2790-0932 Vol. 4, Issue 1: 53-67 

 

 

Copyright: © 2023 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which 

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited 
(https://creativecommons.org/licenses/by/4.0/). 

 

53 

 

Dynamic Optimization Data Association based on JCBB 

Algorithm 

Huiheng Suo
1,3,a

, Bosi Wei
1, b*

, Qiang Hu
1,c

, Jiingjia Pei
3,d

, Xie Ma
2,e

, Yujie Song
2,f

, Bibo Yu
4,g

, 

Xiushui Ma
3,h

 
1
Nanchang Hangkong University, Nanchang, China 

2
Ningbo University of Finance & Economics, Ningbo, China 

3
NingboTech University, Ningbo, China 

4
Huayuan New Materials Co., Ltd, Ningbo, China 

a
suohuiheng@163.com, 

b
wei_bosi@163.com, 

c
1289762339@qq.com, 

d
17815927609@163.com, 

e
maxie@163.com, 

f
1819377256@qq.com, 

g
583771406@qq.com, 

h
mxsh63@aliyun.com 

*
corresponding author 

Keywords: JCBB, DOJCBB, Data Association, SLAM 

Abstract: This paper presents the principles of data association algorithms and describes 

them using mathematical language. It then provides a detailed analysis of the application of 

the Joint Compatible Branch and Bound (JCBB) algorithm in the data association stage, 

proposing the DOJCBB data association algorithm. Firstly, to avoid excessive 

computational resource waste caused by numerous environmental features in complex 

environments, the data association is restricted to a localized association region. Secondly, 

to address the error accumulation resulting from uncertainties during robot operation, a 

threshold constant dynamic adaptation is introduced. Lastly, considering the issues of 

multiple hypotheses with the maximum number of associations and false associations in 

the data association process of the JCBB algorithm, corresponding optimization criteria are 

designed for improvement. The effectiveness of the proposed improved DOJCBB data 

association algorithm is validated through comparative experiments on a simulation 

platform.  

1. Introduction 

Data association initially originated from the field of target tracking, which aims to determine the 

source of each acquired data. In the context of SLAM, data association involves matching sensor 

observations with the constructed map of environmental features to determine if the observed data 
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corresponds to existing map features [1, 2]. Currently, there are three main research approaches to 

data association algorithms: probability-based methods, fuzzy methods, and optimization methods. 

In 1971, Singer et al. [3] introduced the Nearest Neighbor (NN) algorithm, which selects the 

closest feature within a threshold range as the matching result. This method is only applicable in 

simple environments and fails in complex environments due to the occurrence of repetitive 

associations [4], leading to significant errors in SLAM. 

In 1974, Bar-Shalom [5, 6] proposed the Probabilistic Data Association (PDA) algorithm. This 

method assumes independence between each feature and computes the prior information of the 

features through weighted summation. However, due to the neglect of inter-feature correlations, the 

performance of the PDA algorithm deteriorates in dense feature scenarios. To address this issue, 

Bar-Shalom incorporated feature correlations [7] and improved the PDA algorithm, introducing the 

Joint Probabilistic Data Association (JPDA) algorithm. 

In 2001, Neira et al. [8] proposed the Joint Compatibility Branch and Bound (JCBB) data 

association algorithm, which addresses the problem of false associations that increase with the 

number of associations in the hypothesis during independent compatibility tests. Compared to the 

Nearest Neighbor data association algorithm, the JCBB algorithm yields more robust association 

hypotheses in complex environments. However, it shares the drawback of high computational 

complexity with the JPDA method, which hinders real-time implementation. In 2009, Zhou Wu, 

Zhao Chunxia, and others [9] optimized the JCBB algorithm to reduce computational complexity 

and improve matching accuracy. In 2015, Yao Cong [10] proposed a JCBB data association 

algorithm based on K-means clustering. It reduces the number of involved features by clustering 

and grouping the observations, thereby reducing computational complexity. In 2018, Wang et al. [11] 

introduced a SLAM data association algorithm for multiple hypothesis target tracking. They 

improved environment exploration and mapping accuracy by sorting and eliminating association 

hypotheses. 

In 2009, Zeng Wenjing et al. [12] transformed the data association model into a combinatorial 

optimization problem and solved it using ant colony optimization. In 2011, Du Hangyuan et al. [13] 

proposed a fuzzy logic-based data association algorithm by establishing fuzzy rules. This method 

can parallelly process multiple association hypotheses, enhancing the robustness of the data 

association algorithm. In 2017, Li Yanju et al. [14] designed a data association algorithm that 

combines independent compatible nearest neighbor and JCBB algorithms for use in complex 

environments. This approach effectively improves association accuracy in complex environments. 

2. Description and Principles of Data Association Problem 

The environment perception of a robot is an incremental process where environmental landmarks 

need to be continuously incorporated into the constructed map as the robot explores the 

environment. Data association, in essence, involves matching sensor observations with the existing 

map environmental features to determine whether the observed data corresponds to the same 

environmental feature present in the map. 

2.1 Description of the Data Association Problem  

Data association refers to the matching of observation data with environmental features. 

Assuming that the state vector of the robot at different time instances is denoted as 

 0,1, ,kx k T L , the collection of state vectors  , 0,1, ,kX x k T  L represents the robot's 

trajectory. The robot's control inputs at time instance k are represented as  0,1, ,ku k T L , and 
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 , 0,1, ,kU u k T  L represents the set of control inputs. The robot's observations at time instance 

k are represented as  , 1,2, ,k iZ z i I L , where a single observation at time instance k is denoted 

as  1,2, ,iz i I L , and the collection of all robot observations is represented as 

 , 0,1, ,kZ Z k T  L . The environmental landmark features are denoted as  1,2, ,jm j J L , 

and the set of landmark features is represented as  , 1,2, ,jM m j J L . The data association 

variable between an environmental landmark feature 
jm and a single observation iz is represented 

as  1,2, ,nc n N L , and the data association variable of the robot's observation kZ at time 

instance k is denoted as  , 1,2, ,k nC c n N  L . The data association variable for all robot 

observations Z is represented as  , 0,1, ,kC C k T  L . 

Based on the above assumptions, the data association problem can be formulated as an optimal 

estimation problem, as shown in Equation (1): 

    * * *

, ,

, , arg max , | , ,
X M C

X M C P X M Z U C                  (1) 

By using Equation (1), it is possible to calculate the likelihood function  , | , ,P X M Z U C for all 

possible data association variables in the solution space of C to find the optimal solution. However, 

due to the correlation between the data association variable C and the observation information iz , 

as well as the accumulation of the number of observations and landmark features 
jm as the robot 

moves, the solution space of the data association variable C becomes infinitely large. This 

ultimately leads to increased computational complexity and dimensionality. Therefore, brute-force 

solutions are not appropriate. To address this problem, an approach based on maximum likelihood 

estimation [15] can be used to obtain the optimal estimate *C of the data association variable C , as 

shown in Equation (2): 

  * arg max , | , ,
C

C P X M Z U C                          (2) 

The solution for the optimal estimation of the robot trajectory X and landmark features M is 

obtained as shown in Equation (3): 

    * * *

,

, arg max , | , ,
X M

X M P X M Z U C                    (3) 

In Equation (3), it represents the optimal estimation of the robot trajectory X and landmark 

features M . In this study, the focus of the data association research is on the real-time robot 

position and landmark positions, which can be approximated as solved in Equation (4): 

    * * *

,

, arg max , | , ,
k

k k
x M

X M P x M Z U C                   (4) 

2.2. Principles of Data Association 

From the previous section's description, it is evident that solving the data association problem 

involves determining the optimal estimate of the data association variable C . Generally, the data 

association problem can be divided into three parts: threshold filtering, computing association 

metrics, determining association criteria. 
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2.2.1 Threshold Filtering 

This part is able to remove association hypotheses with low likelihood and filter out undesired 

values in the observations, such as clutter and noise. In robot research, errors are often assumed to 

follow a Gaussian distribution. Therefore, each observation data from the robot can potentially 

originate from all environmental landmark features. This leads to a significant amount of data 

involved in association matching. To effectively reduce the computational load of data association, 

it is necessary to filter out unnecessary observations and only consider those within a certain range. 

A window, referred to as an association gate, is set based on this range. The principle behind setting 

the gate is to allow the observation data to have a higher probability of falling within the window. 

The setting of the threshold directly affects the quality of data association, and an appropriate 

threshold value helps improve the accuracy of data association and reduce the computational load. 

Common association gates [16] include elliptical gates and rectangular gates. The following 

sections will introduce these two types of association gates. 

(1) Rectangular association gate  

 

Figure 1. Rectangular association gates 

The rectangular association gate, as shown in Figure 1, 
1 ,1 2 ,2,G r G rR K R K   . If the observed 

measurement kz obtained by the robot and the predicted observation value kz


of the existing 

landmark feature in the map satisfy Equation (5), then the association is considered valid. 

, , , ,k l k l k l G l rz z z K 


  
:

                             (5) 

In Equation (5), l M , M represents the dimension of the association gate; ,k lz
:

represents the 

residual; r represents the standard deviation of the residual; ,G lK represents the threshold constant, 

which is determined by the detection probability, observation density, and dimensionality of the 

state vector. The value of r is related to the observation error and the predicted covariance matrix 

in the Kalman filter, as follows: 
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2 2

r p                                     (6) 

In Equation (6),  represents the observation standard deviation; 
p represents the predicted 

standard deviation of the Kalman filter. Here, we assume that the errors in 
kz

:

and the Gaussian 

error model are independent of each other. Therefore, the probability of the observation falling 

within the threshold can be expressed as Equation (7): 

     1 ,1 2 ,2 ,1 | | 1 | | 1 | |G G G l G lP P t K P t K P t K                L   (7) 

In Equation (7),  ,| |l G lP t K represents the probability of a standard normal random variable 

exceeding the threshold 
,G lK . In the data association research of this paper, all threshold sizes are 

the same, denoted as GK . Therefore, Equation (7) can be simplified as: 

   1 | | 1 | |
M

G G GP P t K MP t K                   (8) 

We can determine the threshold value by looking up the standard normal distribution table based 

on the proportion of observations that fall within the threshold GP . 

(2) Elliptical association gates 

 

Figure 2. Elliptical gates 

Figure 2 shows the elliptical association gate with G as the threshold constant. This association 

gate uses the norm of the residual vector to determine the correlation, as shown in equation (9). The 

threshold is set using the 
2 distribution method. 

2 1

T

d z z S z z G
 

   
      
   

                        (9) 

Here, 2d represents the Mahalanobis distance, S denotes the covariance matrix of observation 
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errors, and z z
 

 
 

represents the innovation vector. If z z
 

 
 

follows a Gaussian distribution, 

then 2d follows a 
2 distribution with dim z z

 
 

 
degrees of freedom. In the data association 

discussed in this paper, the observed data consists of distance and angle measurements between the 

robot and map features. Therefore, the Mahalanobis distance follows a Chi-square distribution with 

2 degrees of freedom. By referring to the 
2 distribution table, the threshold G for the test, as 

indicated by equation (9), can be determined. When this condition is met, it signifies that the 

observation falls within the association range of a particular landmark feature. 

Table 1. Chi-square distribution table with 2 degrees of freedom 

Confidence 

level 
75%  90%  95%  97.5%  99%  99.5%  99.9%  

Value 2.773 4.605  5.991 7.378  9.210  10.597  13.820  

2.2.2 Computing Association Metrics  

For the filtered observations after thresholding, it is necessary to calculate the similarity, namely 

the relative distance, between the observation and the existing landmark features. Typically, two 

distance metrics, Euclidean distance and Mahalanobis distance, are used as measurement methods 

for data association. The Euclidean distance only considers the relative distance between the 

observation and the landmark feature positions, while the Mahalanobis distance takes into account 

the correlation between variables as well.  

In this study, the Mahalanobis distance is chosen as the measurement method between the 

observation and the landmark features. Let ,x y  be samples extracted from the population G, with 

mean  and covariance V , the following equation holds: 

     2 1,
T

D x y x y V x y                        (10) 

Based on equation (10), it can be observed that when the covariance matrix representing the 

uncertainty between variables in the Mahalanobis distance is an identity matrix, the Mahalanobis 

distance reduces to the Euclidean distance. In SLAM algorithms, when the robot obtains the i-th 

observation at time k, the innovation  iv k is obtained by subtracting the predicted observation 

value  iz k


at time k from the actual observation. At the same time, the predicted observation 

covariance matrix  S k is obtained. Therefore, the Mahalanobis distance can be represented as 

     
12 T

k i id v k S k v k


 . 

2.2.3 Determining Association Criteria 

The data association criterion refers to selecting the observation that is closest to the existing 

environmental features based on this criterion. Then, this observation is associated and matched 

with the corresponding environmental feature. 
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2.3 Jointly Compatible Branch and Bound Algorithm 

The JCBB algorithm combines the jointly compatible and branch and bound methods to achieve 

optimal data association. It is based on the premise that false data associations in the independent 

compatibility test increase with the number of associations in the hypothesis. The JCBB data 

association algorithm, under the condition of joint compatibility test, examines the correlation 

between the measurements and landmark features, as well as the correlation between the robot's 

state and the features [], and searches the explanation tree to find the non-empty hypothesis with the 

maximum number of joint compatible associations.  

Given the association hypothesis  1 2, , ,m mH j j j L , the joint observation equation is derived 

as follows:  

 
m m mH H k HZ h x                          (11) 

 

 

 

1

m

m

j k

H k

j k

h x

h x

h x

 
 

  
 
 

M                          (12) 

Given the joint state vector 
mHI and the covariance matrix 

mHh of the observation Jacobian 
mHS , 

we can obtain the equation as follows: 

, 1
m m

m m m m m

k kH k H

T T

H H k H H H

I z h x

S H P H G VG




 

   
 

 

                 (13) 

In equation (13), 
1 2
, , ,

m

T

k k k kz z z z   L represents the joint observation vector of existing 

environmental landmarks. , 1
m

k kHh x



 
 
 

represents the joint compatibility predicted observation of 

the environmental landmarks. V represents the variance of observation noise. 
mHH and 

mHG can be 

obtained using equation (14): 

, 1 , 1

, 1 , 1

,

,

|

|

m

m
k k k kHm

m

m
k k k kHm

H

H
x h x

H

H
x h x

h
H

x

h
G

z

 

 

 

 

 
 
 

 
 
 











                    (14) 

The JCBB data association algorithm uses the criterion of finding the association hypothesis with 

the maximum non-empty joint compatibility pairings as a monotonically non-decreasing standard to 

traverse the explanation tree. In other words, the association hypothesis mH with the maximum 

number of association pairings is sought. Then, equation (15) is used as a method to determine 

whether the association hypothesis mH satisfies the joint compatibility criterion. Equation (15) is as 

follows: 

1 2

,1m H m mm

T

H H H dD I S I 

                   (15) 
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In equation (15), 
mHD represents the Mahalanobis distance of the association hypothesis mH ; 

 dim kd z .The chi-square distribution  2 is a d-dimensional matrix that satisfies the desired 

confidence level 1-α. When equation (3-15) holds true, the association hypothesis is considered as 

the data association result. 

 

3. Design of the DOJCBB Data Association Algorithm 

3.1. Local Feature Association Strategy 

When a robot operates in a complex environment with multiple features, the sensors collect a 

large amount of observation data, while the number of environmental landmarks continues to 

increase over time. Traditional JCBB algorithm matches all stored environmental landmarks with 

the observation data, resulting in significant computational resources being consumed for data 

association, which severely affects the overall real-time performance of the system. The Local 

Feature Association strategy refers to performing data association only within the effective range of 

the robot's sensors. By adopting this strategy, the computational load of the data association 

algorithm remains stable and the number of map features involved in data association at any given 

time is reduced. This reduces the impact on the overall real-time performance of the robot. The 

selection of the local region is determined by the sensor's observation range and the robot's current 

pose at the moment. 

 

Figure 3. Illustration of Local Region 

As shown in Figure 3, the black triangle represents the robot, the solid semicircle represents the 

effective sensing distance of the sensor, and the dashed circle represents the local association region 

with the added compensation distance. The compensation distance is introduced to prevent the 

omission of observed features corresponding to the true map. The black dots represent the existing 

environmental landmarks, and the asterisks represent the observed data. This helps to reduce the 

number of environmental landmark features involved in data association at the same time, thus 

reducing computational complexity. The local association region is determined by Equation (16): 

   
2 2

v i v ix x y y R d                     (16) 

In Equation (16),  ,v vx y represents the current pose of the robot at the moment; 

 ,i ix y represents the position of the ith environmental landmark feature point; R represents the 
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effective distance of the observation sensor; d represents the compensation distance. 

3.2. Adaptive Threshold Value 

The robot's sensors have errors that accumulate over time as the robot operates in the 

environment, leading to dynamic changes in the robot's uncertainty. The data association step is also 

affected by the overall system uncertainty. If the data association is performed using a fixed 

association threshold constant thresholdd , it can deviate from reality and increase the errors in robot 

localization and mapping. 

To address this issue, this section improves the association threshold constant by dynamically 

adjusting it based on the robot's estimated uncertainty. The approach involves using the system error 

covariance matrix to represent the uncertainty of the robot's feature estimation. Then, the 

confidence level of the chi-square distribution is determined based on the error covariance matrix at 

different time steps, which in turn determines the association threshold constant. This allows the 

threshold constant to dynamically adapt. 

In the EKF-SLAMalgorithm,  P k represents the uncertainty of the robot's state. Since the 

robot's pose is represented as  , ,x y  , the uncertainty of the robot's pose state can be quantified 

using the first three dimensions of the covariance matrix  P k , as shown in Equation (17): 

       
11 22 33vP k P k P k P k                   (17) 

Where  vP k represents the uncertainty of the robot's pose state, which is numerically equal to 

the trace (the sum of the diagonal elements) of the covariance matrix of the pose state. 

The environment landmark features are represented as  ,
T

r  . Therefore, the uncertainty of the 

estimation for the i-th environment landmark feature can be quantified using the  P k , 

 2 2i  and  2 3i  elements on the diagonal of the covariance matrix, as shown in the following 

equation: 

   
  

 
  2 2 2 2 2 3 2 3i i i i i

P k P k P k
   

                (18) 

Where,  iP k represents the uncertainty estimation of the environment landmark feature. 

When using the JCBB algorithm for data association, the choice of confidence level can have 

different effects on the robot's pose estimation error. In the initial stage of robot motion, where the 

errors have not yet accumulated, the robot's state uncertainty is low, and the confidence level has 

little impact on pose estimation. However, as the robot moves over time, the estimation errors of the 

environment landmark features accumulate due to system uncertainty, ultimately affecting the 

accuracy of the data association algorithm. The confidence level is directly proportional to the 

threshold constant used for data association. When the robot's state uncertainty increases, the 

threshold constant becomes larger, leading to a higher possibility of misjudgment in data association, 

such as considering an existing environment landmark feature as a new one, which affects the 

robot's localization and mapping. To address the issue of misjudgment in data association and its 

impact on localization and mapping, an improvement can be made as follows: in the initial stage of 

robot operation when the system uncertainty is minimal, a larger threshold value can be used to 

associate more information. As the robot operates for a period of time and the uncertainty increases, 

the possibility of misjudgment also increases. At this point, it is necessary to appropriately reduce 

the confidence level to lower the association threshold. Formula (19) represents a method for 
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dynamically calculating the confidence level based on system changes: 

 
* 01 99.5%

i

P

P
                            (19) 

Where, 
0P represents the initial uncertainty of the robot system state, which is the initial value of 

the state error covariance. 
iP is the quantified value of the uncertainty of the environment landmark 

feature estimation obtained from Formula (18). By using the confidence level calculated based on 

Formula (19) and referring to the chi-square distribution table shown in Table 1, the threshold 

constant for data association can be dynamically and adaptively selected. 

3.3. Optimization of Misassociations 

Although the presence of joint compatibility test in the JCBB data association algorithm reduces 

false associations, there still exists a certain degree of mismatched data. For instance, when multiple 

association hypotheses with the same and maximum number of joint compatible pairs exist, the 

JCBB data association algorithm selects the first discovered association hypothesis as the optimal 

association, even though the first search result may not necessarily be the best. Furthermore, there 

should be uniqueness between observations and environment landmark features, meaning that an 

observation can only come from a single landmark feature and cannot be associated with multiple 

features. However, in the data association solution, there are cases where an already associated 

landmark feature may participate in association again. To address these two types of mismatching in 

the JCBB data association, this section proposes two optimization methods: joint compatibility cost 

minimization and mutual exclusion optimization. Joint compatibility cost minimization refers to the 

situation where multiple association hypotheses with the maximum number of associations exist in 

the JCBB data association algorithm. By comparing the joint Mahalanobis distances of these n 

association hypotheses, the one with the minimum joint Mahalanobis distance is selected as the 

optimal association hypothesis. The definition of joint compatibility cost minimization is provided 

below:  

 
 

1 2
, , ,

min , 1, ,

n

i

H H H

H

i

D D D D

D D i n

H H









 



 




L

L                 (20) 

Where, D represents the set of joint Mahalanobis distances for these n association hypothes

es. 
iHD represents the minimum joint Mahalanobis distance, and H corresponds to the optim

al hypothesis among these association hypotheses.  

Mutual exclusion optimization can be understood as the rejection of matching when another 

observation attempts to associate with an environment landmark feature that has already been 

associated with a measurement. 

3.4. DOJCBB 

Based on the previously proposed strategies of local feature association, adaptive gating, and 

mismatch optimization, this paper presents the Dynamic Optimized Joint Compatibility Branch and 

Bound (DOJCBB) data association algorithm. The specific procedure of the DOJCBB algorithm is 

as follows: 
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(1) Determine the local feature association region based on the robot's system parameters and the 

currently stored environment landmark features using Equation (16).  

(2) Calculate the Mahalanobis distance between each environment landmark feature within the 

determined local region and the current observation, as shown in the following equation: 

     

     2

, 1,2, ,i j i

T

k i i

v k z k z k j N

d v k S k v k


  


 

L
                (21) 

Where  iv k represents the observation residual, and  S k represents the predicted covariance 

of the current observation. Combining the robot's current system state error covariance matrix 

 P k , the uncertainty of the environment landmark feature estimation  iP k from Equation (18), 

and the initial value of the state error covariance 0P , the dynamic confidence  i k  at time k is 

calculated using Equation (19): 

 
 
099.5%i

i

P
k

P k
                             (22) 

Based on the dynamic confidence at different time steps  i k , different chi-square distribution 

values are selected from Table 1 as the dynamic adaptive threshold G for data association. 

 (3) Combining the explanation tree model with the Joint Compatibility Branch and Bound 

(JCBB) algorithm, search for association solutions that satisfy both the joint compatibility criterion 

and the mutual exclusion optimization condition.  

(4) If multiple association solutions with the maximum number of non-empty associations exist, 

select the solution with the minimum joint Mahalanobis distance as the optimal association solution 

using Equation (20). 

4. Simulation and Analysis 

To validate the effectiveness of the improved data association algorithm in this paper, this section 

establishes a simulation environment for data association algorithms based on the simulation 

platform developed by Tim Bailey et al. at the University of Sydney, as shown in Figure 5. The size 

of the simulation environment is 10×10, and the green line represents the true path of the moving 

robot. The robot moves counterclockwise along this path starting from the coordinate origin. The 

blue asterisk (*) points represent the environmental landmark features. The simulation parameters 

are shown in Table 2. 

Table 2. Simulation Environment Parameter Settings 

Movement Speed 0.5 /m s  Control Frequency 40Hz  

Maximum Observation 

Distance 
2m  Observation Frequency 5Hz  

Maximum Steering Angle 20 / so  Control Noise  0.05 / ,3m s o  

Observation Range 180o Observation Noise  0.1 / ,1m s o  
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Figure 4 Simulation environment 

 

Figure 5 ICNN Simulation Results of Data Association 

 
Figure 6 JCBB Simulation Results of Data Association 
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Figure 7. DOJCBB Simulation Results of Data Association 

 

Figure 8. Data Association Error Analysis 

Based on the simulated environment and parameter settings in Table 2, Figures 5, 6, and 7 show 

the data association results of the ICNN data association algorithm, JCBB data association 

algorithm, and the improved DOJCBB data association algorithm proposed in this paper, 

respectively. The red "+" symbols in the figures represent the estimated positions of the 

environmental landmarks, and the blue "*" symbols represent the actual positions of the 

environmental landmarks. Figure 8 shows the error variation curves of the average estimated 

landmark positions and actual positions for the three algorithms in 20 experiments, as described by 

Equation (23). 

                 
2 2

1 1

n m
i i i i

m t m t

i j

x j x j y j y j

e
n

 

   
  




        (23) 
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Where,          ,
i i

m mx j y j  represents the estimated position of the j-th environmental landmark 

in the i-th experiment;         ,
i i

t tx j y j  represents the actual position of the environmental 

landmark. Through the analysis of the association results obtained by the three algorithms and the 

relative distances between landmark estimates and actual positions, the following observations are 

made: 

(1)When using the Independent Compatible Nearest Neighbor (ICNN) algorithm, the uncertainty 

of the robot system increases with the motion time, leading to an increasing estimation error in the 

positions of the environmental landmarks. 

(2)Compared to the ICNN algorithm, the Joint Compatibility Branch and Bound (JCBB) 

algorithm considers the correlation between the environmental landmarks and the observation data 

using the joint compatibility test. It also takes into account the correlation between the system state 

and the environmental landmarks. The data association results of JCBB algorithm show a 

significant improvement in the estimation error of landmark positions compared to the ICNN 

algorithm. 

(3)The proposed Dynamic Optimization of Joint Compatibility Branch and Bound (DOJCBB) 

algorithm incorporates dynamically adaptive changes in the association threshold and optimization 

criteria. It enhances the accuracy of the data association algorithm, and the error during the 

algorithm execution only fluctuates within a small range. 

5. Conclusion 

This paper first provides a mathematical description of data association and introduces the Joint 

Compatibility Branch and Bound (JCBB) algorithm. Then, addressing the issues of computational 

resource waste in complex environments and the presence of multiple maximum matching 

hypotheses in JCBB, the Dynamic Optimization JCBB (DOJCBB) data association algorithm is 

proposed and simulated. Experimental results validate the improved accuracy of the DOJCBB 

algorithm compared to ICNN and JCBB algorithms. 
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