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Abstract: Aiming at the key technical challenges of small target detection in UAV aerial 

photography scenarios, this study proposes an improved scheme SPD-YOLO based on the 

YOLOv8n architecture. The scheme achieves performance breakthroughs through three 

core innovative modules: 1) adopting the SPD-Conv module instead of the traditional 

downsampling operation to maintain the resolution of the feature map through the spatial 

pyramid decomposition strategy; 2) introducing the P2 high-resolution feature layer to 

construct an enhanced feature pyramid, which improves the feature extraction capability of 

tiny targets; 3) adopting the WIoU v3 loss function to optimize the positioning accuracy 

through the dynamic focusing mechanism. Experiments on the VisDrone2019 test set 

demonstrate that the complete solution (SPD-Conv + P2 + WIoUv3) achieves an 

mAP@0.5 of 38.3%, surpassing the baseline YOLOv8n by 5.3 percentage points, with 

precision and recall reaching 49.1% and 37.2%, respectively. Ablation experiments 

validate the effectiveness of each module: the introduction of the P2 feature layer alone 

improves 2.6 percentage points, combined with WIoU v3 improves another 1.2 percentage 

points, and finally the introduction of the SPD-Conv module improves the overall 

performance by 5.3 percentage points. This scheme significantly improves the detection 

performance of small targets in UAV aerial photography scenarios while maintaining 

real-time detection speed. 

1. Introduction 

Target detection technology, as a core research direction in the field of computer vision, has 

demonstrated important application value in many key areas such as security monitoring, intelligent 
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transportation, industrial quality inspection and automatic driving. In recent years, with the rapid 

popularization of UAV technology, its unique advantages in urban governance, environmental 

survey, agricultural production, disaster warning and other scenarios have become increasingly 

prominent. With its high-altitude overlooking perspective and fast response capability, UAV can 

efficiently acquire high-definition image data in a wide range of areas, which provides a new way 

of data acquisition for various applications. 

In the development of target detection algorithms, deep learning-based methods have mainly 

formed two technical routes: the two-stage detection framework represented by R-CNN generates 

the candidate region first and then carries out classification and regression, which has high accuracy 

but low computational efficiency; while the single-stage detector represented by the YOLO series 

adopts an end-to-end detection method, which accomplishes feature extraction and target 

localization, which has a significant advantage in real-time. It is worth noting that RetinaNet 

effectively solves the category imbalance problem by introducing Focal Loss [1], while the YOLO 

series algorithms achieve a better balance between detection accuracy and computational efficiency. 

However, the existing algorithms still face many challenges in UAV aerial photography scenarios 

[2], especially the performance for small target detection needs to be improved. To address this 

problem, researchers have proposed a variety of innovative solutions. liu et al. improve the 

utilization of shallow features by optimizing the feature extraction strategy of SSD [3]; Wang's team 

introduces the STDS structure and combines it with the BiFormer attention mechanism in 

YOLOv8
[4]

, which ensures the detection performance while controlling the complexity. 

2. YOLOv8n algorithm introduction 

YOLOv8 as the latest evolution of YOLO series algorithms, is officially released by the 

ultralytics team in 2023, which represents the latest technology in the field of real-time target 

detection. The algorithm inherits the excellent architecture of YOLOv5, and realizes the 

comprehensive improvement of detection performance through several innovative 

improvements.YOLOv8 adopts the backbone network structure based on the CSP (Cross Stage 

Partial) idea [4], combined with the improved Feature Pyramid Network (FPN) and Path 

Aggregation Network (PAN) [5] to perform multi-scale feature fusion, which effectively enhances 

the model to detect targets of different sizes. It effectively enhances the detection ability of the 

model for targets of different sizes. The core innovation is the introduction of a new C2f module, 

which draws on the ELAN structure design concept of YOLOv7 [6], and significantly improves the 

feature expression capability of the network by optimizing the feature transfer path. In the design of 

the detection head, YOLOv8 adopts the strategy of separating the classification head and the 

detection head, and innovatively adopts the anchor-free mechanism to directly predict the edge 

position of the target, this improvement not only simplifies the model structure, reduces the 

computational complexity, but also effectively reduces the interference of the label noise. To meet 

the needs of different application scenarios, YOLOv8 provides multiple versions from lightweight 

to high performance (including YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x), 

which achieve faster inference speed while maintaining excellent detection accuracy. 

3. Improvements to YOLOv8n 

3.1 Introduction of SPD-Conv 

In target detection tasks, the main challenges of small target detection are its limited pixel 

occupancy and insufficient feature information. When small and large targets appear simultaneously, 

model training is easily dominated by the large target, leading to insufficient learning of the small 
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target. Traditional convolutional neural networks further lose the detailed features of small targets 

when performing feature extraction through stepwise convolution and pooling operations, thus 

affecting the detection performance. 

To address this problem, this study introduces the SPD-Conv module into the backbone network 

of YOLOv8n, replacing the original step-spanning convolution and pooling operations.SPD-Conv 

consists of a space-to-depth transformation (SPD) layer and a non-step-spanning convolutional 

layer. Among them, the SPD layer achieves downsampling by reorganizing the spatial information 

while retaining the complete channel information, while the non-stepwise convolution layer extracts 

richer feature representations by using the extended channel dimension without changing the feature 

map size. This improvement effectively alleviates the problem of information loss of small target 

features during downsampling, thus enhancing the detection accuracy. 

For any feature map X with dimension S×S×C1, it can be decomposed into several sub-feature 

maps. The specific realization is as follows: 

𝑓0,0 = 𝑋[0: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 0: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

𝑓1,0 = 𝑋[1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 0: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

𝑓𝑠𝑐𝑎𝑙𝑒−1,0 = 𝑋[𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 0: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

𝑓0,1 = 𝑋[0: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

𝑓1,1 = 𝑋[1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

          ⋮ 

𝑓𝑠𝑐𝑎𝑙𝑒−1,1 = 𝑋[𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

𝑓0,𝑠𝑐𝑎𝑙𝑒−1 = 𝑋[0: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

𝑓𝑠𝑐𝑎𝑙𝑒−1,𝑠𝑐𝑎𝑙𝑒−1 = 𝑋[𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒 − 1: 𝑆: 𝑠𝑐𝑎𝑙𝑒], 

For any input feature map X,its sub-map 𝑓𝑥,𝑦  consists of all elements whose position 

coordinates are divisible by the scale factor 𝑠𝑐𝑎𝑙𝑒.  

The feature map 𝑋(𝑆, 𝑆, 𝐶₁)  is transformed to 𝑋′(𝑆/𝑠𝑐𝑎𝑙𝑒, 𝑆/𝑠𝑐𝑎𝑙𝑒, 𝑠𝑐𝑎𝑙𝑒²𝐶₁)  by a 

space-to-depth transformation (SPD). a convolutional layer with stride=1 (filter number 𝐶₂ <

𝑠𝑐𝑎𝑙𝑒²𝐶₁) is subsequently connected to further obtain 𝑋′′(𝑆/𝑠𝑐𝑎𝑙𝑒, 𝑆/𝑠𝑐𝑎𝑙𝑒, 𝐶₂). The use of a 

non-spanning convolution (stride=1) maximizes the preservation of the feature information: if a 

convolution with stride>1 is used, it can be straightforward to achieve the X→X'' size 

transformation, it leads to asymmetric sampling and non-selective loss of feature information. 

3.2 Introducing of the WIoUv3 loss function  

Aiming at the characteristics of UAV aerial images with many small targets and serious 

occlusion, the traditional detection methods often perform poorly.The CIoU loss function adopted 

by YOLOv8 has some limitations although it improves the detection effect by introducing three 

constraints, namely, overlap area, centre point distance and aspect ratio. Its calculation formula is: 

𝐿𝐶𝐼𝑜𝑈 = 𝐿𝐼𝑜𝑈 +  
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2  +  𝛼𝜈                  (1) 

𝐿𝐼𝑜𝑈 = 1 − IoU,IoU = 
|𝐴∩𝐵|

|𝐴∪𝐵|
                    (2) 

𝜈 =
4

𝜋2
( arctan

𝑤𝑔𝑡

ℎ𝑔𝑡
 − arctan

𝑤b

ℎh
)2                         

(3)
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𝛼 = 
𝜈

(1−𝐼𝑜𝑈)+𝜈
                              (4)

 

The CIoU loss function optimises the bounding box regression accuracy in target detection 

through multi-dimensional constraints, and each parameter in its mathematical expression 

represents: the intersection and concurrency ratio (IoU) reflects the degree of overlap between the 

predicted box and the real box, the centroid coordinate describes the spatial location of the 

bounding box, the Euclidean distance measures the degree of centroid offset, the minimum external 

rectangle diagonal length is used for the normalisation process, the weight coefficient in the aspect 

ratio penalty term 𝛼 regulates the penalty intensity, and similarity ratio 𝜈 measures the aspect 

ratio difference.When the predicted frame has the same aspect ratio as the real frame 

(wgt/hgt = wb/hb ), the similarity ratio 𝜈=0 invalidates the penalty term, at this time, CIoU can 

effectively avoid the optimisation stagnation problem due to the same aspect ratio, and improve the 

model's detection robustness in complex scenes. 

In order to improve the generalisation performance of the target detection model when the 

prediction frame overlaps with the real frame, this study uses a dynamic non-monotonic focusing 

mechanism to construct a novel loss function. The distance-attention mechanism established by the 

distance metric forms a WIoUv1 loss function containing a two-layer attention structure. The 

innovativeness of this method is reflected in the combination of geometric constraints and the 

attention mechanism, which effectively alleviates the problem of over-penalisation of overlapping 

regions in the bounding box regression process of the traditional method, and thus improves the 

adaptive ability of the model in complex scenes.The specific calculations are described below. 

𝐿𝑊𝐼𝑜𝑈𝑣1 = 𝑅𝑊𝐼𝑜𝑈𝐿𝐼𝑜𝑈;𝑅𝑊𝐼𝑜𝑈 ∈ [1,e),𝐿𝐼𝑜𝑈 ∈ [0,1.0)            (5) 

𝑅𝑊𝐼𝑜𝑈 = exp(
(𝑥−𝑥𝑔𝑡)2+(𝑦−𝑦𝑔𝑡)2

(𝑊𝑔
2+𝐻𝑔

2)∗
)                     (6) 

where, 𝑅𝑊𝐼𝑜𝑈 denotes the regression loss of the high quality anchor frame, (𝑥, 𝑦) and (𝑥𝑔𝑡, 𝑦𝑔𝑡) 

represent the centre coordinates of the predicted and real frames, respectively, and 𝑊𝑔 and 𝐻𝑔 are 

the width and height dimensions of the smallest outer rectangle of both.This loss function adopts a 

bidirectional adjustment strategy: on the one hand, it enhances the IoU loss LIoU for normal quality 

anchor frames through RWIoU, and on the other hand, it uses LIoU to suppress the value of 𝑅𝑊𝐼𝑜𝑈 

for high quality anchor frames. 

WIoUv3 is optimised and improved on the framework of WIoUv1, which effectively suppresses 

the negative gradient effects caused by low-quality samples by introducing dynamic adjustment 

parameters.WIoUv3 is calculated as follows. 

𝐿𝑊𝐼𝑜𝑈𝑣3 = 𝑟𝐿𝑊𝐼𝑜𝑈𝑣1;   𝑟 =
𝛽

𝛿𝛼𝛽−𝛿                      (7) 

𝛽 =
𝐿𝐼𝑜𝑈

∗

𝐿𝐼𝑜𝑈
∈ [0, +∞)                            (8) 

where, non-monotonic focusing coefficient r, outlier β, and hyperparameters α and δ. The dynamic 

cross-parallel ratio loss 𝐿𝐼𝑂𝑈
∗  serves as the core regulation index. The loss function effectively 

solves two key problems through an intelligent gradient assignment strategy: firstly, it suppresses 

the interference gradient generated by low-quality samples, and secondly, it optimises the focus on 

ordinary quality anchor frames, which significantly improves the accuracy and model generalisation 

performance of small target detection in UAV aerial photography scenarios, and in particular, it 

exhibits superior adaptability in the tasks of complex background and tiny target detection. 
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3.3  P2 microscale target detection layer 

The three detection heads of the original YOLOv8 model receive feature maps from the fusion of 

the backbone network and the feature pyramid network, which have the sizes of 80×80, 40×40, and 

20×20 pixels, corresponding to the input image of 640×640 pixels after 8-fold, 16-fold, and 32-fold 

downsampling. In the UAV small target detection task, since the target size is usually extremely 

small (e.g., below 10×10 pixels), such deep downsampling leads to a serious loss of small target 

feature information. To solve this problem, this paper proposes to add a P2 microscale detection 

layer on top of the original detection architecture, which fuses the 160×160 feature map (containing 

richer small target and detail information) obtained from the second layer in the backbone network 

after 4-fold downsampling with the higher-level features. This 160×160 feature map has a smaller 

sensory field and stronger detailed feature expression capability, which can effectively retain the 

small-size target information captured by the UAV. By cross-scale feature fusion of the P2 feature 

map with the P3-P5 feature maps, a four-level detection system containing 160×160 (P2), 80×80 

(P3), 40×40 (P4), and 20×20 (P5) is constructed, which significantly improves the model's detection 

capability for small targets. 

4. Experimental results and analysis 

4.1 Experimental environment 

The experimental environment of this paper is shown in Table 1, the input image resolution is 

640×640, the initial learning rate is 0.01, and the attenuation coefficient is set to 0.0001. 

Table 1. Experimental environment and parameters 

name 
parameters 

operating system Linux 

CPU Intel(R) Xeon(R) Platinum 8255C 

GPU NVIDIA GeForce RTX 3080 

display memory 10GB 

development environment  Python 3.8 

development framework Pytorch 1.11 

CUDA 11.3 

4.2 Dataset 

In this study, the VisDrone2019 dataset [7-8] is used to carry out training, validation and testing 

experiments. The dataset was acquired by the Machine Learning and Data Mining Laboratory of 

Tianjin University via UAV, and contains a total of 8629 static images, which are divided into 6471 

training images, 548 validation images and 1610 test images. All the images in the dataset cover 10 

types of target objects, including pedestrians, occupants (driving tools or stationary people), cars, 

vans, buses, trucks, motorcycles, bicycles, awning tricycles, and ordinary tricycles, which not only 

include small target objects such as small vehicles and pedestrians, but also cover diverse and 

complex scenes. 

4.3 Evaluation indicators 

For the performance evaluation indexes of the target detection task, this paper adopts Precision, 
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Recall and mean average precision (mAP) as the core evaluation system, and the definitions and 

calculation methods of each index are as follows: 

4.3.1 Precision: 

P =
TP

TP+FP
 

Where, TP is true cases (number of positive samples correctly detected) and FP is false positive 

cases (number of negative samples misdetected). This indicator reflects the reliability of the 

detection results, the higher the value indicates the lower the false detection rate. 

4.3.2 Recall: 

R =
TP

TP+FN
 

FN is the number of false counterexamples (positive samples of missed detections). It measures 

the completeness of the test, with higher values indicating a lower rate of missed tests. 

4.3.3 Average Precision (AP) 

AP= ∫ P (R)dR 

Obtained by integrating Precision-Recall curves, this metric integrates the P-R trade-off 

relationship and reflects the detection accuracy of a single category. 

4.3.4 Mean Average Precision (mAP) 

mAP =
∑ APi

k
i=1  

k
 

where k is the total number of categories, obtained by averaging the APs of each category, as a 

criterion for the overall performance of the algorithm. 

4.4Ablation Experiments 

All experiments in this study were conducted under strictly consistent data parameters and 

environment configurations. In order to verify the effectiveness of the proposed algorithm for 

detecting small targets in UAV aerial photography scenes, multi-module improvement ablation 

experiments are conducted on the YOLOv8n base model based on the VisDrone2019 dataset, 

including the introduction of the WIoUv3 loss function, the SPD-Conv module, and the P2 

microscale target detection layer. The experimental design takes YOLOv8n as the base model and 

constructs comparative experimental groups by progressively integrating the improved modules: 

group A adds only the P2 detection layer, group B adds the WIoUv3 loss function on the basis of 

group A, and group C further integrates the SPD-Conv module on the basis of group B to constitute 

the complete scheme. This progressive experimental design can effectively separate the contribution 

of each improved module and ensure a fair assessment of the independent and combined effects of 
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each module. The experimental results are summarised in Table 2. 

Table 2. Ablation experiment results 

Arithmet

ic 

P

2 

WIoU 

v3 

SPD-Co

nv 

P/% R/% mAP50 

/% 

mAP50-95 

/% 

YOLOv8

n 

   44.8 33 33 19.1 

A √   46.2 35.1 35.6 20.5 

B √ √  47.6 35.9 36.8 21.4 

C √ √ √ 49.1 37.2 38.3 22.1 

5. Conclusion 

In this paper, a target detection algorithm based on the improved YOLOv8n architecture is 

proposed to address the key issues of large target scale difference, dense spatial distribution and 

difficult feature extraction in UAV aerial photography scenes. By introducing the SPD-Conv spatial 

pyramid decomposition convolution module, the algorithm realizes the progressive expansion of the 

sensory field while maintaining the resolution of the feature map, which effectively solves the 

problem of small target feature loss caused by the traditional downsampling operation. At the same 

time, the added P2 shallow feature extraction path complements the deep semantic features, 

enhancing the network's feature expression capability for multi-scale targets. 

In terms of algorithm optimisation, this study adopts the WIoU v3 (Weighted IoU) loss function 

as an alternative to the traditional IoU metric, which enables the model to adaptively adjust the loss 

weights of samples with different difficulty levels through its dynamic focusing mechanism and 

outlier-based gradient gain assignment strategy, effectively enhancing the localisation accuracy of 

the detection frame. Compared with the loss function based on geometric feature constraints, WIoU 

v3 significantly enhances the detection robustness of tiny and densely distributed targets while 

maintaining computational efficiency. Experimental validation on the VisDrone2019 dataset shows 

that the improved algorithm strikes a good balance between detection accuracy and computational 

efficiency. In particular, the detection of small and densely distributed targets is significantly 

improved, while the computational complexity of the model is kept at a low level, demonstrating its 

practical application on UAV embedded platforms. These improvements provide new technical 

ideas for aerial target detection in complex scenes. 
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