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Abstract: Due to the rapid development of Internet technology and the rapid growth of the 

number of users, various data and information show an explosive growth trend. The 

analysis and processing of massive data is more and more important for the development of 

enterprises. To solve the problems of growing set and increasing system pressure, this 

paper proposes a distributed system with a three-tier architecture based on Bayesian 

classifier(BC). This paper first describes the module functions and system interface 

requirements of the three-layer distributed system(TLDS), followed by the design of the 

TLDS, and finally the system implementation. And the training time is analyzed, and it is 

found that the SNB algorithm improves the accuracy and shortens the training time. 

1. Introduction 

With the advent of the era of big data, classifying massive data has become a very important 

task. However, data classification under a single-machine architecture has been unable to utilize 

limited hardware resources to meet data analysis needs. Researchers try to use BC. The purpose of 

this research is to use the abundant hardware resources in the three-tier distributed system to 

improve the performance of data classification[1-2]. Due to the difference in hardware environment 

between traditional stand-alone systems and distributed systems, traditional data processing 

methods often fail to make full use of the considerable hardware resources in distributed systems, 

resulting in lower performance improvements and utilizing scalable hardware resources in 

distributed systems To improve the performance of data classification has become a research 

direction worth exploring[3-4]. 

At present, many researchers have discussed and studied Bayesian classifiers and three-layer 

distributed systems, and have achieved good results. For example, scholars such as Alem A 

proposed a solution aimed at eliminating the security problem of Hadoop clusters. The solution is 
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based on secure remote cryptographic protocols, blockchain technology and threshold cryptography 

theory. Practical Byzantine Fault Tolerance (PBFT) is deployed as a consensus mechanism in On 

the blockchain, studies have shown that the proposed scheme outperforms many existing schemes 

in terms of computational overhead and storage requirements, and does not affect the security level 

of the system [5]. In order to overcome the problems of lack of accuracy and operability in data 

classification of existing technologies, researchers such as Seo J H have developed a new algorithm 

called MB Ferns and the R package to build a multi-branch decision tree and use the data obtained 

from the training data. The Nave Bayesian probability model, a classifier that centrally generates 

key features, proves that the proposed algorithm performs well for general classification problems 

and training data extraction operations [6]. Bayesian classifier has obvious advantages in data 

classification and processing. It can be seen that the study of three-layer distributed system based on 

Bayesian classifier has very important practical significance for data processing [7]. 

This paper studies the TLDS based on the BC. The structure of this paper can be divided into 

three parts: The first part is a brief introduction to the related concepts of the TLDS, including 

system modules and interfaces. The second part is the design of the three-tier distributed system. 

The system design part includes three parts, namely the task management module, the node load 

model and the block parallel scheduling strategy; the third part is the implementation of the 

three-tier distributed system, in this part, the accuracy and training time of SNB algorithm, INB 

algorithm and NB algorithm are analyzed. 

2. Related Overview 

2.1. System Module Function 

The distributed system adopts a three-tier model with 4 modules. The functions of each 

module are: 

(1) Logical Transaction (LT). LT is a processing center module for user requests. This module 

can assemble the SQL statement according to the received package sent from the Client Agent, and 

send the assembled SQL statement package to the next layer: CP or DA[8] through data 

segmentation technology. In order to improve the flexibility of system services, that is, to flexibly 

adjust the logical processing order of the system to user requests, the configuration file of LT uses 

XML format to describe the order and type of service operations [9]. In this way, it is only 

necessary to change the configuration file of the LT to change the logical processing sequence of 

user requests without changing the program code [10]. 

(2) Cache Pool (CP). The main function of this module is to improve the data read and write 

rate and reduce the access pressure to the database [11]. 

(3) Database Agent (DA). This module is an access proxy for the database [12]. Its role is to 

shield the underlying details of the DC, implement the read-write separation strategy, and also 

allocate requests to the DC through a certain load balancing strategy, with the function of flow 

control [13]. 

(4) Database Cluster (DC). A DC is a cluster with multiple databases, storing a large amount of 

data [14]. The number of DC in the entire system and the number of databases in each DC can vary 

according to specific circumstances [15]. The role of Client Agent (CA) in the figure is to be 

responsible for the user's access request [16]. And convert the user request package into the package 

format defined by DSAS. Then requests are distributed to lower-level modules through a certain 

load balancing strategy. The benefit of this is that it prevents LT from blocking due to processing 

complex data [16]. 
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2.2. Interface Requirements 

In a three-layer distributed system, if a cross-layer multi-protocol association data 

classification task is used, the original measurement system should be integrated and new functional 

modules should be developed, including the data scanning program executed in the background and 

the page display module in the foreground [17]. It enables users to expand data scanning tasks with 

new logic, including: automatic scanning task delivery page, alarm threshold setting page, and 

alarm information display page. These pages all use a relatively single color scheme, which makes 

the whole interface simple and refreshing. At the same time, the execution results of the tasks are 

marked in green and red, which makes the results display clearer, and the contrast between different 

results is stronger, which is convenient for users to use [18]. 

 

task management

task list add task task type Performance report

User Management

user list authority management role management log audit

 

Figure 1. System interface structure diagram 

3. System Design 

3.1. Task Management Module 

The task management module is used to manage the data scanning tasks issued by the user and 

the returned scanning task results, and mainly includes a task scheduling sub-module, a task issuing 

sub-module, and a task result accessing sub-module. Among them, the task scheduling sub-module 

is used to execute corresponding tasks regularly or periodically according to the parameters 

provided by the user; the task release sub-module is used to convey the data scanning task to the 

corresponding node; the task access sub-module is used to access task information and task results, 

and returns the above information according to certain filter conditions when the user needs it. 
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Figure 2. Task module structure diagram 

3.2. Node Load Model 

This section will build a reasonable data scan load model for each data storage node based on 

the total scan workload for that node. Suppose a distributed system uses the Ki replica mechanism 

to store all data shards on n nodes (k≤n). Then for the scan subtask for the data slice Pi, it can be 

further divided into scan subtasks for k replicas. Among them, the division ratio of scanning 

subtasks for k replicas should satisfy the following constraint formula: 
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Specifically, Yi,h indicates the proportion of the scanning workload that the replica of the data 

shard Pi on the storage node Rh should undertake. For a storage node Sh with mh replicas, the overall 

scanning workload Sh can be expressed by the following formula: 
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3.3. Block Parallel Scheduling Strategy 

The block parallel scheduling strategy fully considers the load balancing between data 

classification and multi-threading and the subtask switching overhead within a single thread, and 

improves the parallel processing capability of multiple scanning subtasks in a single storage node. 

The core idea is that in the block parallel scheduling strategy, each scan subtask will be divided into 

multiple block subtasks of the same size as independent scheduling units for each data classification 

task. For example, the scan subtasks for data slices P5 and P4 in FIG. 3 are divided into 4 and 2 

block subtasks of the same size, respectively. From the perspective of subtask switching overhead, 

each data classification thread in the block parallel scheduling strategy should schedule continuous 

block subtasks as much as possible, so as to avoid the impact of subtask switching overhead as 
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much as possible. On the other hand, when there is load imbalance among data classification 

threads, the data classification with higher load in the block parallel scheduling strategy will 

migrate some block subtasks to the data classification with lower load, so as to ensure that different 

data Classification threads have similar scan loads. In general, the core idea of the block parallel 

scheduling strategy is to ensure a balanced scan load and low subtask switching overhead in the 

multi-threaded parallel scanning process. 
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Figure 3. Block parallel scheduling scheme 

4. System Implementation 

4.1. Accuracy Analysis 

The advantage of the semi-supervised naive Bayes algorithm is that it is very simple to apply, 

has no particularly complicated logic and has good classification performance. 

The experimental part first describes the experimental data set, and then designs the 

experiment according to the algorithm steps. In the experiment, 8 data sets are selected from the 

database to detect the Naive Bayes algorithm (NB) and the semi-supervised Naive Bayes algorithm 

(SNB). and the improved Naive Bayes classification algorithm (INB) for the classification 

performance of these three classifiers. 

Select data sets 1 to 4 to analyze the accuracy, and the obtained accuracy results are shown in 

Table 1. 

Table 1. Correctness table of various algorithms 

Data set NB(%) INB(%) SNB(%) 

Data set 1 70.27 73.24 79.89 

Data set 2 81.32 83.45 86.78 

Data set 3 82.48 85.62 90.67 

Data set 4 90.23 94.83 98.71 

 

Analysis of the data in Table 1 shows that the three algorithms of NB, INB and SNB have the 

highest accuracy in data set 4, which are 90.23%, 94.83% and 98.71% respectively, and the 
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accuracy of the three algorithms varies with The increase of the data set increases, which shows that 

the classification performance of the NB, INB and SNB algorithms are improved and depend on the 

labeled training data. The more labeled training data, the better the performance of these classifiers; 

from this experiment It can be seen that the accuracy of the SNB algorithm and the INB algorithm 

is higher than that of the NB algorithm in most cases, indicating that the use of unlabeled data can 

improve the performance of the classifier, but among the three algorithms The accuracy of SNB is 

always the highest, which shows that SNB improves the accuracy of classification. 

4.2. Analysis of Training Time 

Data sets 5 to 8 are used as test data sets in the training time analysis, because these four data 

sets reflect the characteristics of massive data. First we will test how long it takes for SNB to run on 

the cluster. In the experiment, the 16 nodes are divided into eight groups, and then the data 

processing capabilities of the clusters composed of 2, 4, 6, 8, 10, 12, 14 and 16 nodes are tested 

respectively. From the running time, the speedup ratio is calculated. Next we will test the time it 

takes for SNB to train on these four datasets. The training time of SNB and NB is shown in Table 2, 

and the schematic diagram of the acceleration ratio of SNB algorithm is shown in Figure 4. 

Table 2. Algorithm training time table 

Data set 
Data set size 

(G) 

NB training 

time(s) 

SNB training 

time(s) 

Number of 

nodes 

Data set 

5 
1.2 51278 48630 6 

Data set 

6 
5.4 246319 217694 2 

Data set 

7 
10.6 476581 347068 2 

Data set 

8 
20.4 816472 706549 2 

 

 

Figure 4. Speedup versus number of nodes 
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It can be seen from Table 2 that the training time of the SNB algorithm in the four data sets is 

shorter than that of the NB algorithm, which shows that the SNB algorithm can shorten the data 

training time. It can be seen from Figure 4 that the speedup ratio of the data set increases with the 

increase of the number of nodes, which shows that the SNB algorithm has good scalability and is 

suitable for large-scale data sets. Through the experimental analysis of the SNB algorithm, it is 

found that the algorithm improves the accuracy and shortens the training time. 

5. Conclusion 

BC is widely used in data classification, so this paper designs and studies a TLDS based on BC. 

This paper firstly introduces the relevant concepts, then designs the system, and finally the system 

implementation part. In this paper, through the experimental comparison and analysis of the three 

algorithms of SNB, INB and NB, it is found that the SNB algorithm has the highest accuracy and 

the shortest training time among the three algorithms, so the SNB algorithm has good performance 

and good scalability. Large scale datasets. This paper studies the TLDS based on BC and draws 

conclusions, but there are still many shortcomings that need to be improved. The TLDS based on 

BC is a direction worthy of in-depth research, which has a positive effect on data classification and 

processing. 
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