

Scholar Publishing Group

Machine Learning Theory and Practice

https://doi.org/10.38007/ML.2025.050107

ISSN 2790-0983 Vol. 5, Issue 1: 64-75

Copyright: © 2025 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

(https://creativecommons.org/licenses/by/4.0/).

64

Software Engineering Practice of Microservice

Architecture in Full Stack Development: From

Architecture Design to Performance Optimization

Yuxin Wu
1, a*

1
College of Engineering, Carnegie Mellon University, Moffett Field 94035, CA, United States

a
Email:yuxinwu202507@163.com

*Corresponding author

Keywords: Single system, microservice architecture, multi feature fusion MicroRefactor、

distributed transaction

Abstract ： With the rapid development of the Internet and the growth of business

requirements, the traditional single system is faced with dual challenges of maintenance

and expansion due to its huge code base and highly coupled modules. The existing

microservice migration methods rely on subjective judgment or single dimensional

analysis, which makes it difficult to fully capture system characteristics. This article

proposes a microservice reconstruction scheme based on multi feature fusion, integrating

source code and runtime data to construct an inter class dependency undirected weighted

graph model, extracting microservice modules through clustering analysis, and supporting

database splitting strategies and distributed transactions to ensure data consistency. The

core innovation includes a multi feature fusion mechanism that integrates semantic

similarity, code structure dependencies, and runtime interactions; Develop the microservice

extraction tool MicroRefactor, which significantly improves efficiency and accuracy

through a three-stage process; Provide database splitting and consistency assurance

solutions. Experimental verification shows that this scheme achieves efficient and accurate

module extraction in JPetStore system and medium-sized e-commerce system. After

reconstruction, the system functions are complete and performance optimization is

significant. The current research is limited by the need to improve code automation

processing capabilities and relies on manual design of test cases. In the future, we will

explore automated processing technology and test case generation methods to further

improve the refactoring plan.

1. Introduction

With the rapid development of the Internet and the growth of business requirements, the

traditional single system faces the dual challenges of maintenance and expansion due to its complex

and huge code base. Its highly coupled modules lead to any functional modification that may cause

a global impact, significantly reducing development efficiency and increasing deployment risk. To

address these challenges, microservice architecture has gradually become a mainstream solution. Its

core is to break down monolithic applications into a set of small, autonomous services[1-3], each

Machine Learning Theory and Practice

65

focusing on specific business functions, following the principle of high cohesion and low coupling,

supporting multilingual development and independent deployment, thereby enhancing the flexibility

and scalability of the system. However, the key to the migration of monolithic systems to

microservices lies in efficiently and accurately extracting microservice modules. Existing methods

have obvious limitations: Domain Driven Design (DDD) relies on the subjective judgment of

domain experts to construct domain models, which is highly subjective; Automatic or semi-

automatic extraction techniques are often based on single dimensional analysis of system

dependencies such as code analysis and log tracking, making it difficult to fully capture complex

characteristics such as code structure and runtime interactions (such as code analysis may ignore

runtime dependencies, and system load analysis may not cover the entire code path)[4-5], resulting

in a lack of comprehensiveness and objectivity in the extraction results. In response to this, this

article proposes a multi feature fusion based single system microservice reconstruction scheme. By

integrating system source code and runtime data, an undirected weighted graph model reflecting

inter class dependencies is constructed, and microservice modules are extracted using clustering

analysis techniques[6-7]; Simultaneously design a supporting database splitting strategy, utilize

distributed transactions to ensure data consistency, and implement engineering implementation

based on Spring Cloud and Spring Boot. The core contributions of the solution include: a multi

feature fusion mechanism that integrates semantic similarity, code structure dependencies, and

runtime interaction characteristics to comprehensively and objectively capture system features;

Develop MicroRefactor tool to improve extraction efficiency and accuracy through a three-stage

process of preprocessing, weighted average calculation of inter class correlation values, and

weighted undirected graph clustering[8-9]; Using the commonly used experimental system

JPetStore and medium-sized e-commerce system in software engineering as case studies to verify

their effectiveness, the reconstructed system has complete functionality and significantly improved

performance; Provide database splitting strategies and data consistency assurance solutions to

reduce the difficulty of refactoring implementation[10-11].

2. Correlation Theory

2.1. Monolithic vs. Microservice: Comparative Analysis and Scenario-Based Trade-off

In the field of software engineering, monolithic architecture and microservice architecture are

two core application design patterns, each with distinct characteristics and applicable scenarios.The

monolithic architecture (as shown in Figure 1) treats the entire application as a single entity,

integrating all functional modules internally, typically deployed on a web server in the form of a

web application archive (WAR) file, and distributing traffic through a load balancing server[12-13].

Its advantages lie in its easy implementation and maintenance, especially suitable for small

projects with low initial development costs and short iteration cycles. However, as the project scale

expands and business complexity increases, the limitations of monolithic architecture gradually

become apparent: the high coupling of modules leads to a decrease in code maintainability and an

increase in update difficulty; The scalability of the system is limited, and when dealing with high

concurrency scenarios, it can only be addressed by increasing server resources, which is costly and

has limited effectiveness, ultimately affecting the system's response speed and stability.

The microservice architecture (as shown in Figure 2) adopts a distributed and modular design,

decomposing complex systems into multiple small, autonomous service units, each running

independently within a process and interacting through lightweight communication mechanisms

such as RESTful APIs and message queues.

Compared to monolithic architecture, its core advantages are reflected in: 1) Scalability: Service

units can independently and horizontally expand, enabling on-demand resource allocation and

Machine Learning Theory and Practice

66

improving system performance; 2) Flexibility: The loose coupling feature supports independent

development, deployment, and upgrade of services, reducing the impact on other services or

systems; 3) Maintainability: Code modularization facilitates understanding, modification, and unit

testing, improving manageability; 4) Technical diversity: Different services can choose the most

suitable technology stack and programming language based on functional requirements, enhancing

the flexibility of system construction and maintenance[14-15].

Figure 1. Web Application Architecture of Multi Server Centralized Database with Load Balancing

Figure 2. Microservices Architecture Diagram

2.2. Collaborative application of Microservices using Spring Boot, Spring Cloud, and Maven

POM

Spring Boot, as an open-source Java development framework based on the Spring framework,

aims to optimize application lifecycle management (startup, development, configuration,

deployment, running, monitoring). It significantly reduces code volume through annotation driven

development, integrates traditional XML/Properties configuration into a concise YML format, and

improves configuration management efficiency; Built in Tomcat/Jetty/Undertow servers, supporting

a lightweight runtime mode that does not require WAR package deployment, simplifying the

Machine Learning Theory and Practice

67

deployment process; Integrating the Actor package to implement application monitoring

functionality and simplify package management dependency configuration has become the

preferred tool for developing individual microservices in microservice architecture[16-18].

Spring Cloud is built on Spring Boot and is a key framework for microservice architecture

governance. By integrating components such as Eureka (service registration and discovery), Zuul

(API gateway), Hystrix (fuse), etc., it provides service governance tools required for distributed

systems (such as load balancing and configuration management) and supports efficient deployment

of cloud native applications on Docker/PaaS platforms. It is deeply bound with Spring Boot and

relies on the latter to achieve rapid development and independent deployment of service instances,

jointly forming the technical stack of Java microservice development [19-20].

The Maven Project Object Model (POM), as a Java build automation tool, standardizes project

build, reporting, and document management processes with POM as the core. It achieves automated

build through lifecycle management and plugin mechanisms, following the principle of "convention

over configuration" to reduce configuration complexity. At the same time, it extends functionality

through a rich plugin ecosystem (compatible with Spring Boot, JUnit, Git, etc.), reducing

developers' investment in building tool configuration and making it more focused on business logic

development.

The synergistic effect of the three: Spring Boot simplifies microservice unit development, Spring

Cloud provides distributed governance capabilities, Maven POM unifies construction and

dependency management, jointly building an efficient and scalable Java microservice development

system. In terms of limitations, Spring Cloud strictly relies on Spring Boot and cannot be used

independently; Maven's principle of 'agreement over configuration' may limit flexibility in complex

project scenarios.

3. Research Method

3.1. Research on Microservice Refactoring Scheme for Single System Based on Multi Feature

Fusion

The current research on microservice refactoring faces two core challenges: Domain Driven

Design (DDD) relies on subjective judgments of domain experts, which can lead to excessive

abstraction of business concepts and affect the accuracy of microservice partitioning; Although

automated microservice identification technology reduces subjective dependencies, it often focuses

on a single dimension (such as code structure or runtime interaction), making it difficult to fully

capture system features, resulting in poor performance or weak adaptability of the architecture after

refactoring. Some tools, such as ServiceButton, require a complete product in the software design

phase and have high method complexity, which limits their applicability in monolithic system

refactoring. In response to the above issues, this article proposes a single system microservice

reconstruction scheme based on multi feature fusion, as shown in its overall architecture. The

solution constructs a comprehensive system feature model through multidimensional analysis of

individual systems, reduces subjectivity, and can be operated with only source code, making it more

applicable. The refactoring process is divided into five stages: first, parse the source code of the

monolithic system, construct a set of classes (abstracting each class as a vertex of the graph), and

formally represent the class relationship graph through the triplet G=(C, R, W) (Figure 3).

Machine Learning Theory and Practice

68

Figure 3. Class Relationship Diagram Construction Process

among them, C is the set of class nodes, R is the set of inter class relationships, and W is the

comprehensive correlation value (calculated by weighting semantic similarity, AST structure

similarity, and function call frequency). Next, perform multi feature correlation value calculation,

integrating semantic similarity (measuring the tightness of business logic), AST structure similarity

(reflecting code structure correlation), and function call frequency (revealing runtime interaction

activity) to obtain a comprehensive correlation value through weighted averaging. The higher the

comprehensive correlation value, the closer the inter class relationship, and the more it should be

classified into the same microservice. Then, the Chinese Whisper algorithm is used to perform

clustering analysis on the class relationship graph, with the input being a triplet G=(C, R, W).

Through iterative optimization of clustering labels, a microservice extraction scheme (clustering

distribution of class nodes) is output to improve cohesion and reduce coupling. Then enter the

database splitting stage, splitting the tables corresponding to entity classes in the original monolithic

database into different microservices; Release foreign key constraints or table connection operations

across microservices and retrieve data through API calls; For non entity class tables (such as log

tables), build a "non entity class table access microservice" to achieve interaction; Introduce

distributed transactions to ensure data consistency. Finally, a microservice governance architecture

is built based on Spring Cloud (integrating Eureka service registration, Zuul gateway, Hystrix fuses,

and other components). The extracted class code is encapsulated using Spring Boot, and service

calls are implemented through Feign. Hystrix handles call exceptions.

3.2. Multi feature fusion class relationship modeling and microservice reconstruction method

This section proposes a multi feature fusion method for calculating the comprehensive

correlation value of class relationships, which is used to construct the class relationship graph

Machine Learning Theory and Practice

69

required for microservice reconstruction. This method integrates three types of association features:

semantic similarity of class documents, structural similarity of abstract syntax tree (AST), and

dynamic interaction frequency during system runtime, and uses a weighted average strategy to

generate comprehensive inter class association values. In microservice refactoring, class documents

serve as the core carrier of functional logic, and their semantic similarity directly reflects the

functional correlation between classes. This study uses the BERT model to calculate the deep

semantic similarity between class documents. The specific process is as follows: first, unify the

encoding format of class documents to UTF-8, extract core elements such as class name, method

name, variable name, etc., and generate feature files in the form of "class name. info"; Then use the

BERT tokenizer to perform fine-grained segmentation on the feature file, taking the hidden state of

the last layer of the model as the class document vector representation; Finally, the cosine similarity

is used to measure the degree of semantic correlation between vectors, and the calculation formula

is

𝑅𝑐𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐
(𝐶𝑖 , 𝐶𝑗) =

𝑐𝑙𝑎𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖∙𝑐𝑙𝑎𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑗

‖𝑐𝑙𝑎𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑖‖×‖𝑐𝑙𝑎𝑠𝑠𝑉𝑒𝑐𝑡𝑜𝑟𝑗‖
 (1)

the range of values is [0,1], with larger values indicating tighter semantic associations. The

similarity of class AST structure reflects the cohesion of code. High similarity classes usually have

inheritance or interface implementation relationships. This study proposes an AST similarity

algorithm based on Levenshtein distance. The steps are as follows: convert the class AST into a

string representation and initialize the (m+1) × (n+1) dimensional group D (m, n is the string

length), fill in an increasing sequence from 0 to m/n, and calculate the minimum editing distance

through dynamic programming

D[i][j] = min(D[i − 1][j] + 1, D[i][j − 1] + 1, D[i − 1][j − 1] + cost) (1)

(where cost is the character matching judgment value, 0 for the same and 1 for different), and

finally normalized to obtain similarity.The algorithm flow is shown in Figure 4.

The frequency of inter class interactions during system runtime reflects the strength of functional

coupling. In this study, a self-developed AOP link tracing tool was used to record the function call

behavior under test case coverage

This indicator is implemented through non-invasive AOP technology, accurately reflecting the

degree of correlation between classes during actual runtime. To balance the three types of

correlation features, the weighted average method is used to generate the comprehensive correlation

value, and the calculation formula is

W = W1 × 𝑅𝑐𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐
+𝑊2 × 𝑅𝐶𝐴𝑆𝑇 +𝑊2 × 𝑅𝐶𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐶𝑎𝑙𝑙 (1)

Among them, the weight coefficients meet the requirements. Table 1 provides three preset

weight schemes (semantic similarity priority: 0.5, 0.25, 0.25; structural similarity priority: 0.25, 0.5,

0.25; dynamic interaction priority: 0.25, 0.25, 0.5), which support flexible configuration according

to reconstruction needs.

Machine Learning Theory and Practice

70

Figure 4. AST Similarity Calculation Process Diagram Between Classes

Table 1. Weight Allocation Table for Multi-Feature Fusion

Focus W₁ (Semantic) W₂ (AST) W₃ (Interaction)

Semantic Priority 0.5 0.25 0.25

Structural Priority 0.25 0.5 0.25

Dynamic Priority 0.25 0.25 0.5

3.3. Mechanism Microservice extraction and database splitting methods

After completing the comprehensive correlation value calculation of class relationships,

microservice extraction can be achieved through unsupervised graph clustering. This article adopts

the Chinese Whisper algorithm, which classifies nodes with similar association relationships into

the same cluster through label propagation, automatically determines the number of clusters, and is

suitable for processing large-scale sparse graph data and robust to noise. The specific process is as

follows: import a class relationship graph G containing n nodes (node numbers 0 to n-1, initial

labels are numbers), set the number of iterations and association threshold; In each iteration, the

edge weights of all categories of neighboring nodes are accumulated for each node, and the

category with the highest weight is selected (if there are multiple maximum values, the smallest

number is selected). If the weight of the category exceeds the threshold, the node is classified into

this category. Otherwise, the original category is maintained; Repeat until the preset number of

Machine Learning Theory and Practice

71

iterations is reached, and the final label of the output node completes clustering. Threshold selection

needs to balance stability and flexibility, usually initialized to 0.1 or 0.3 and adjusted according to

data.Database splitting should follow the principle of single responsibility, with each microservice

corresponding to an independent database. According to whether the data table has corresponding

entity classes, the splitting strategy can be divided into two categories: for tables with entity classes,

they are assigned to the corresponding microservice database, the database foreign key constraints

are lifted, and the foreign key related operations are encapsulated as APIs through the ORM

framework. Cross table logic is processed at the application layer (such as after splitting the order

and customer tables, the order service calls the customer service through the API to verify the

customer ID); For tables without entity classes (such as region tables), entity classes are generated

through ORM reverse engineering, and a data access layer (DAO), business logic layer (Service),

and control layer (Controller) are built, encapsulated as independent microservices (such as "table

access services without entity classes"), providing CRUD interfaces for other services to call,

avoiding the complexity caused by database triggers or middleware.Distributed transactions are the

core of ensuring data consistency after database splitting. Comparing two-stage commit (2PC),

three-stage commit (3PC), and transaction compensation mode (TCC), this article chooses the TCC

scheme because it has a small impact on system performance and can ensure final consistency,

despite complex business logic and increased reconstruction costs. TCC is divided into three stages:

Try stage to reserve resources, Confirm stage to confirm operations and use reserved resources,

Cancel stage to cancel operations and release resources. During implementation, it is necessary to

handle exceptions such as null rollback (Confirm/Cancel not executed), idempotency (repeated

operations have no impact), and hanging (Cancel not executed after Try failure), and ensure

consistency by recording transaction status and checking transaction IDs.The Spring Cloud

framework is chosen for microservice implementation, and its mature ecosystem, flexible

component selection, and extensive community support are key advantages. The architecture design

includes core components: Eureka is responsible for service registration and discovery, Zuul serves

as a gateway to receive HTTP requests and implement load balancing distribution through Ribbon,

Feign or RestTemplate is used for inter service communication, Spring Boot Admin integrates

Eureka information to monitor service running status, Hystrix fuses provide fault tolerance

mechanisms to avoid microservice avalanche effects.Microservice encapsulation relies on the

Spring Boot framework, and the process includes: creating a Spring Boot project and defining

service interfaces and implementation classes, using Spring annotations to mark externally callable

service methods, configuring basic information such as service names and ports in the configuration

file, and finally registering the service to the Eureka service center through the startup class. In

terms of service invocation, Feign simplifies the invocation side encoding through declarative

interfaces, while RestTemplate requires manual construction of HTTP requests, making it more

suitable for complex business logic. In response to Feign call exceptions, combined with Hystrix's

processing flow, the following steps are taken: defining Feign client interface to declare service

endpoints and methods, writing a service downgrade handling class to trigger downgrade logic

when the call fails, enabling Feign and Hystrix support in the configuration file, and finally

implementing service calls and exception handling by injecting Feign client.

4. Results and Discussion

4.1. Design and experimental verification of MicroRefactor microservice automatic extraction

tool

MicroRefactor is a single system microservice automatic extraction tool based on multi feature

fusion. Its core functions are divided into three modules: reconstruction preprocessing, multi feature

Machine Learning Theory and Practice

72

fusion analysis, and class relationship graph generation and clustering analysis. Refactoring the

preprocessing module to verify the integrity of the source code package through

SourceCodePreprocessor, unify the encoding to UTF-8, and repackage it; SemanticSimilarity

Preprocessor extracts representation information such as class names, method names, and variable

names and saves them to a local file; ASTSimilarityPreprocessor converts source code into a Class

class file, builds an Abstract Syntax Tree (AST), and persistently stores it. The multi feature fusion

analysis module integrates three types of correlation indicators: BertSemanticSimilarity Analyzer

calculates the semantic similarity of class documents, ASTSimilarityAnalyzer quantifies the

structural differences of AST using Levenshtein distance algorithm, DynamicInteractionFrequency

Analyzer calculates the inter class interaction frequency based on AOP link tracking tool, and

finally generates a comprehensive correlation value by weighted fusion of the three types of

indicators through MultiFeature Fusion Analyzer. The class relation graph generation and clustering

analysis module utilizes GraphGenerator to construct undirected weighted graphs, uses Chinese

Whisper algorithm for label propagation clustering, outputs microservice extraction schemes, and

supports result export.The tool implementation adopts mixed programming of Java and Python,

with Java encapsulating core functions and Python calling Java methods through PyJNIus. The

development environment includes JDK 8u202, IntelliJ IDEA 2022.1, Python 3.5.10, and PyCharm

2022.1. The tool interface is based on the B/S architecture. The left navigation bar includes

functions such as refactoring preprocessing, microservice extraction, and system help. The right

side displays the extraction results and supports export.The experimental verification takes the

classic monomer system JPetStore as the object, and uses cohesion (COH) and coupling (COP) as

evaluation indicators. By setting weight parameters (semantic similarity weight of 0.5, AST

similarity of 0.25, interaction frequency of 0.25), the comprehensive inter class correlation value is

calculated and a relationship graph is constructed. The Chinese Whisper algorithm (threshold of 0.1)

is used for clustering. The experimental results show that the microservice scheme extracted by

MicroRefactor has higher consistency on the SC1 and SC2 microservice components compared to

the method in reference [51], and is basically consistent on SC3; The cohesion (COH) increased

from 2.29 to 2.59, and the coupling (COP) decreased from 2.56 to 2.50, verifying the effectiveness

of the tool in improving cohesion and reducing coupling.

4.2. Model experiment

After completing microservice extraction and database splitting, it is necessary to name and

structurally encapsulate the extracted microservices. Based on the extracted class clusters, the class

clusters related to product information and search functions (such as Product and SearchResult

related classes) are named as product microservices, the class clusters related to user registration

and login are named as user microservices, the class clusters related to shopping cart operations are

named as shopping cart microservices, and the class clusters related to order creation and payment

are named as order microservices. At the same time, independent "entity free class access"

microservices are encapsulated for data tables (such as regional dictionary tables) corresponding to

entity free classes. Each microservice adopts a layered architecture: the control layer (such as

UserController, productController) processes HTTP requests, the business logic layer (such as

UserServiceImpl, productServiceImpl) implements core functions, the data access layer (such as

UserMapper, productMapper) encapsulates database operations, entity classes (such as User,

Product) define data structures, and are equipped with startup classes (such as

UserServiceApplication) for microservice instantiation.During the deployment phase, a

microservice architecture is built based on the Spring Cloud framework, integrating Eureka as the

service registry, Zuul as the gateway to handle request routing, Ribbon for client load balancing,

Machine Learning Theory and Practice

73

Hystrix for circuit breaker downgrade mechanism, and Spring Boot Admin for service monitoring.

The specific deployment process includes: creating an independent microservice module and

managing dependencies through Maven, configuring Eureka Server and Client to achieve service

registration and discovery, enabling Zul gateway to define routing rules, integrating Ribbon and

Feign to simplify service calls, configuring Hystrix to prevent avalanche effects, and integrating

Eureka through Spring Boot Admin to achieve service status monitoring. After the user request is

initially processed by the Zuul gateway, the target service instance is discovered through Eureka

and forwarded to the specific microservice through Ribbon load balancing. After processing is

completed, the result is returned to the gateway and the client responds, forming a complete request

processing chain.

4.3. Effect Analysis

This article proposes a microservice reconstruction scheme for monolithic systems based on

multi feature fusion. The core steps include feature fusion, database splitting, distributed transaction

design, and tool implementation and verification.The solution first integrates three types of features:

semantic similarity of class documents, structural similarity of abstract syntax tree (AST), and

frequency of runtime interaction. It generates inter class association values through weighted

averaging and uses unsupervised graph clustering algorithm (Chinese Whisper) to extract

microservices. During the iteration process, nodes are reclassified based on the weights of adjacent

nodes, and a threshold (usually 0.1-0.3) is set to balance stability and flexibility.Database splitting

follows the principle of single responsibility, with entity class corresponding tables assigned to

microservice databases, foreign key constraints removed, and foreign key operations encapsulated

as APIs through ORM. Entity class tables (such as region tables) are generated in reverse through

ORM to build DAO/Service/Controller layers, encapsulated as independent microservices (such as

"entity class table access services"), avoiding trigger/middleware complexity.The distributed

transaction adopts the TCC (Try Confirm Cancel) mode to ensure consistency: resources are

reserved in the Try stage (such as order service creation records and reserved inventory of goods

and services), confirmed and consumed in the Confirm stage, and resources are released in the

Cancel stage (such as rolling back inventory when an order is cancelled). Need to handle empty

rollback, idempotency, and hanging transactions, ensuring consistency through state records and

transaction ID verification.In terms of tools, we will develop a mixed programming tool

MicroRefactor (Java core+Python call), which supports pre-processing, extraction, and result export

in the B/S architecture interface. The experiment used JPetStore as the object, with semantic

weights of 0.5, AST and dynamic features of 0.25 each, and a threshold of 0.1. After clustering, the

cohesion (2.59) was higher than the comparison method (2.29), and the coupling degree (2.50) was

lower. After the actual e-commerce system reconstruction, the cohesion increased by 30% (1.87 →

2.43), the coupling degree decreased by 15% (3.12 → 2.65), and four microservices including user

management and product search were successfully extracted.The current tool requires manual

setting of feature weights and relies on a full set of test cases for link tracking (which takes about 2

hours in the middle system). Automation functions (such as interface document generation) need to

be improved. The future plan is to introduce machine learning automatic parameter tuning, combine

fuzzy testing to generate high coverage test cases, and enhance link tracing overhead through

bytecode to expand cross language support.

5. Conclusion

Microservice architecture, with its advantages of modularity, scalability, and technology

Machine Learning Theory and Practice

74

independence, provides a new path for extending the lifecycle of individual systems and improving

efficiency, but specific transformation plans are relatively scarce. Therefore, this article proposes a

single system reconstruction scheme based on multi feature fusion, covering five core contents:

problem modeling, multi feature correlation value calculation, microservice extraction, database

splitting, and reconstruction implementation. Research has shown that existing domain driven

modeling has strong subjectivity, while automatic or semi-automatic methods often approach from

a single dimension. Therefore, this approach enhances the scientificity of reconstruction through

multi feature fusion. Based on this solution, a microservice extraction tool MicroRefactor was

developed, which significantly improved the efficiency of microservice extraction for individual

systems. The tool adopts a three-stage process: first, preprocessing is performed, then three types of

inter class correlation values are calculated and weighted averaged, and finally a weighted

undirected graph is constructed for clustering to extract microservices. The effectiveness of the tool

was verified through the commonly used experimental system JPetStore in the field of software

engineering. Furthermore, taking a medium-sized e-commerce system as a practical object, the

application of the tool in actual projects was demonstrated. The refactoring process covered

automatic extraction, database splitting, distributed transaction ensuring data consistency, and

microservice deployment based on Spring Cloud. Tests showed that the system functionality was

correct, complete, and the performance was significantly improved after refactoring. However,

there are still two shortcomings in current research: firstly, MicroRefactor needs to improve its

automated code processing function after extraction; Secondly, tools rely on manually designed

comprehensive functional test cases, which are costly and prone to omission for complex large-

scale systems. In the future, we will explore code automation processing technology and automated

functional test case generation methods.

References

[1] Jordanov J , Petrov P , Kuyumdzhiev I ,et al.Domain-Driven Design in Cloud Computing:.

NET and Azure Case Analysis[J].TEM Journal, 2025, 14(1).DOI:10.18421/TEM141-05.

[2] Dobrinin M V .Extending RESTful web service resources in a JAVA-component-driven-

architectureapplication:US18424015;US202400018424015;US202418424015A;US202418424

015[P].US12238159B2;US2025012238159B2;US12238159B2;US12238159[2025-08-13].

[3] Tang S , Chen J , Wang D ,et al.MVDiffusion++: A Dense High-Resolution Multi-view

Diffusion Model forSingle orSparse-View 3D Object Reconstruction[C]//European Conference

on Computer Vision.Springer, Cham, 2025.DOI:10.1007/978-3-031-72640-8_10.

[4] Jadcherla S , Burnam M H .PHYSIOLOGICAL SENSING DEVICE HAVING DATA ACCESS

LAYER, AND METHODS OF OPERATION OF

SAME:USUS2024/041912;US202400000041912;US2024041912W;WO2024US41912[P].WO2

025/035147A2;WO2025000035147A2;WO2025035147A2;WO2025035147[2025-08-13].

[5] Dai Z , Wang S , Lu Q ,et al.Nonlinear hysteresis system control based on sliding mode neural

network and observer[J].Transactions of the Institute of Measurement & Control, 2025,

47(10).DOI:10.1177/01423312241279496.

[6] Zhu P. Construction and Experimental Verification of Automatic Classification Process Based

on K-Mer Frequency Statistics[C]//The International Conference on Cyber Security

Intelligence and Analytics. Cham: Springer Nature Switzerland, 2024: 391-400.

[7] Zhang Y. Research on Optimization and Security Management of Database Access Technology

in the Era of Big Data[J]. Academic Journal of Computing & Information Science, 2025, 8(1):

8-12

Machine Learning Theory and Practice

75

[8] Pan Y. Research on the Design of a Real-Time E-Commerce Recommendation System Based on

Spark in the Context of Big Data[C]//2025 IEEE International Conference on Electronics,

Energy Systems and Power Engineering (EESPE). IEEE, 2025: 1028-1033.

[9] Yan J. Analysis and Application of Spark Fast Data Recommendation Algorithm Based on

Hadoop Platform[C]//2025 Asia-Europe Conference on Cybersecurity, Internet of Things and

Soft Computing (CITSC). IEEE, 2025: 872-876.

[10] Wu, H. (2025). The Commercialization Path of Large Language Models in Start-Ups.

European Journal of Business, Economics & Management, 1(3), 38-44.

[11] Xiu L. Analyses of Online Learning Behaviour Based on Linear Regression

Algorithm[C]//2025 IEEE International Conference on Electronics, Energy Systems and Power

Engineering (EESPE). IEEE, 2025: 1333-1338.

[12] Huang J. Resource Demand Prediction and Optimization Based on Time Series Analysis in

Cloud Computing Platform[J]. Journal of Computer, Signal, and System Research, 2025, 2(5):

1-7.

[13] Cai, Y. (2025). Research on Positioning Technology of Smart Home Devices Based on

Internet of Things. European Journal of AI, Computing & Informatics, 1(2), 80-86.

[14] Xu D. Design and Implementation of AI-Based Multi-Modal Video Content Processing[J].

European Journal of AI, Computing & Informatics, 2025, 1(2): 44-50.

[15] Zhu, Z. (2025). Cutting-Edge Challenges and Solutions for the Integration of Vector

Database and AI Technology. European Journal of AI, Computing & Informatics, 1(2), 51-57.

[16] Huang, J. (2025). Reuse and Functional Renewal of Historical Buildings in the Context of

Cultural Heritage Protection. International Journal of Humanities and Social Science, 1(1),

42-50.

[17] Lai L. Data-Driven Credit Risk Assessment and Optimization Strategy Exploration[J].

European Journal of Business, Economics & Management, 2025, 1(3): 24-30.

[18] Lu, C. (2025). The Application of Point Cloud Data Registration Algorithm Optimization

in Smart City Infrastructure. European Journal of Engineering and Technologies, 1(1), 39-45.

[19] Ye, J. (2025). Optimization and Application of Gesture Classification Algorithm Based on

EMG. Journal of Computer, Signal, and System Research, 2(5), 41-47.

[20] Zhu, Z. (2025). Application of Database Performance Optimization Technology in Large-

Scale AI Infrastructure. European Journal of Engineering and Technologies, 1(1), 60-67.

