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Abstract: With the development of TV data services, the video conversion equipment in 

the past was concentrated, and the storage capacity and processing functions did not have 

scalability, and could not adapt to large-scale video processing. The video editing task is an 

information-intensive task, and a large number of video transcoding tasks are transferred to 

a distributed system, making large-scale video transcoding work possible. The purpose of 

this article is to integrate the research of HDFS and MapReduce distributed transcoding 

system, fully consider the advantages of HDFS and MapReduce, combine video encoding 

and decoding technology and video submission method, and propose a group-based 

classification GOP. Video clips are transcoded individually, and the entire transcoding 

system is easily configured and managed through a workflow. The results show the impact 

of changing the number of cluster nodes on transcoding performance, with 10 and 50 GB 

datasets having faster transcoding speeds in the system compared to 1, 2, 4 and 6 GB 

datasets. Effects of changing block size and manual copy number on transcoding 

performance. The experimental results show that the system achieves the best transcoding 

time performance when the block copy number is set to 4. 

1. Introduction 

As mobile applications will become more and more important, video, as the most important tool 

on the Internet, will also play an important role in mobile applications. However, the current mobile 

video application does not play a role, mainly because the formats supported by mobile phones are 

limited, and the screen size, display capability and processing capability of each mobile terminal are 

different, and the demand for video is also different [1]. Since video conversion requires processing 

the entire split video file as one record, all video must be streamed during transcoding [2]. 

In the face of large-scale data level, MapReduce has become the most widely used parallel 
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programming model. Hosseini B proposed an understandable parallel and distributed fuzzy 

weighted clustering method at each stage. Although the proposed method can be used for many data 

clustering purposes, it has been applied to multiple expression clustering to reveal functional 

relationships of genes in biological processes. Following MapReduce, the proposed method also 

proposes a new similarity measure that benefits from a combination of ordered weighting and 

Spearman's correlation coefficient. In the proposed method, genes of access density are added to 

build clusters. The final cluster result is then obtained by merging these clusters. The voting system 

finds the best weights among all possible outcomes for different variables and thus the most 

efficient clusters. The entire algorithm is implemented on a distributed computing platform and is 

scalable to process data of any size stored in cloud infrastructure [3]. Martin D proposed MRQAR, 

a new generalized clustering technique for finding quantitative association rules in large amounts of 

data, whose design follows a MapReduce process using Apache Spark. MRQAR is incrementally 

trained to run any sequential quantitative regression algorithm on big data problems without 

reconfiguring such algorithms. As a case study, we integrate the multi-objective evolutionary 

algorithm MOPNAR into MRQAR to validate the general MapReduce process proposed in this 

work. Results obtained in an experimental study on five big data problems show that MRQAR is 

able to obtain a compact set of quality rules in time [4]. Neshatpour K demonstrates a complete 

end-to-end implementation of a big data analytics application on a hybrid CPU + FPGA architecture. 

Choosing the best architecture that provides the highest acceleration for big data applications 

requires a deep understanding of each application. Therefore, we developed MapReduce 

implementations of K-means, K-Nearest Neighbors, SVM, and Naive Bayes in the Hadoop 

streaming environment and found it suitable to develop FPGA-compatible non-Java mapper 

functions to increase growth. Ambient - depends on the hardware. Further analysis of the various 

components of Hadoop MapReduce to identify candidates for hardware acceleration [5]. It can be 

seen that this paper integrates HDFS and MapReduce to study the distributed transcoding system 

with certain innovation. 

In this paper, the large video transcoding system combining HDFS and MapReduce technology 

effectively shortens the processing time of large video files, and the computing power and storage 

capacity of the system can also be freely expanded with the improvement of transcoding requests, 

especially in - The most mainstream high-definition video. If Hadoop technology is used as a 

distributed video transcoding platform, it will be able to overcome the problems of low data storage 

security and low transcoding performance in the traditional centralized video transcoding system, 

and realize the storage and transcoding performance of large video data. For large-scale video 

sources stored and backed up on the storage server in the network monitoring system, large-scale 

transcoding optimization is carried out in the background to adapt to various terminals with 

different needs, while achieving a smooth viewing experience and cleaning requirements. 

2. Research on Distributed Transcoding System Combined with HDFS and MapReduce 

2.1. HDFS File System 

The HDFS cluster adopts a master-slave system. A cluster has two types of nodes: a single 

Namenode and multiple Datanodes. A set of basic services for collecting and providing external 

catalogs of information about files or data. The database node is an underlying entity responsible for 

managing the actual database storage and retrieval, processing data read and write requests, and 

periodically reporting data block information to the name node [6-7]. When executing a task, the 

name node is responsible for providing information such as the location and capacity of the data 
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node where the data source of the task is located. Data is stored in files in HDFS with a default size 

of 64 MB [8-9]. 

2.2. Mapreduce Computing Model 

Map/Reduce is an open source cloud computing programming model developed according to the 

Google computing model. Programs written through this model can perform large-scale data 

processing in a cluster system with high reliability, high fault tolerance, and high efficiency in 

parallel, such as data mining, log analysis, etc. [10-11]. The Map Reduce framework also provides a 

task scheduler configured in the form of a plug-in responsible for unified scheduling of jobs. At the 

same time, the framework can also monitor tasks and re-execute failed tasks. Map Reduce is similar 

to HDFS, or even consistent, both are Master/Slave Architecture, one is the Job Tracker as the 

Name Node in HDFS; the other is the Task Tracker as the Data Node in HDFS. A Hadoop cluster 

usually consists of a Job Tracker and multiple Task Trackers, Job Tracker is used for task scheduling, 

and Task Tracker is used for task execution [12-13]. 

2.3. Principle of Video Compression Coding 

In addition to the above overloads, there are also information entropy overload, cognitive 

overload, visual overload, image area overload, modular texture calculation, etc. [14-15]. Using 

these correlations, a part of the pixel data can be removed from the data of another part of the pixel, 

so that the data can be highly compressed, which is beneficial to the storage and transmission of the 

data [16-17]. 

Common video compression algorithms mainly use discrete cosine transform (DCT) to reduce 

spatial redundancy, and use predictive coding and motion compensation techniques to reduce 

temporal redundancy [18]. 

3. Design and Research of Distributed Transcoding System Combined with HDFS and 

MapReduce 

3.1. The Overall Framework of the System 

As known in Figure 1, the system can be divided into three parts, the client layer, the user 

interface module, the specific transcoding module. The client terminal is connected to the system 

through WIFI, GPRS, network cable, etc. After the user connects to the system and logs in through 

registration, he can manage his own user information, manage historical video information, and 

perform video transcoding operations as needed. The transcoding module transcodes the 

corresponding video files according to the user's needs according to the transcoding task submitted 

by the user. 
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Figure 1. Overall frame diagram of the transcoding system 

3.2. Video Codec Conversion Implementation 

The main function of the video codec conversion module is to perform codec conversion on the 

video that is fragmented on HDFS. Since Hadoop is developed based on Java, the open source 

project Xuggle is selected as the video codec tool for the convenience of invocation. Xuggle 

encapsulates FFmpeg in Java, and its core codec library is the same as FFmpeg. 

3.3. Determining the Weight Coefficient Using AHP 

Write the hierarchical model, construct the associated comparison matrix, calculate the largest 

eigenvalue and the corresponding eigenvector, and normalize each column of the comparison 

matrix. The result of processing is: 
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where (AW)i represents the ith element of the AW vector. 

4. Analysis and Research of Distributed Transcoding System Combined with HDFS and 

MapReduce 

4.1. The Effect of Changing the Number of Cluster Nodes on Transcoding Performance 

The purpose of the test is to measure the overall transcoding time and system speed at different 

cluster sizes. It is defined as: transcoding time of 1 node/transcoding time of N nodes (N is the 

specific number of nodes). The Hadoop platform is configured with default settings. Table 1 shows 

the transcoding time speed for different number of node clusters. 

Table 1. Speedup of transcoding time 

Number of nodes 
Data set 

1GB 2GB 4GB 6GB 10GB 50GB 

1 1 1 1 1 1 1 

2 1.68 1.71 1.86 1.86 1.87 1.95 

4 3.27 3.34 3.68 3.82 1.89 1.94 

6 4.32 4.86 5.24 5.56 5.61 5.87 

 

 

Figure 2. Speedup of transcoding time with different number of nodes 

From the results of the speedup ratio in Figure 2, the speedup ratio of the transcoding time of 1, 2, 

4, 6, 10, and 50GB is all 1, and when the number of nodes is 2, the speedup ratio of 1GB is 1. The 
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speedup for transcoding time is 1.68, the speedup for 2GB is 1.71, the speedup for 4GB is 1.86, the 

speedup for 6GB is 1.86, the speedup for 10GB is 1.87, and the speedup for 50GB is 1.86. The 

speedup for transcoding time is 1.95. When the number of nodes is 4, the speedup ratio of 1GB 

transcoding time is 3.27, the speedup ratio of 2GB transcoding time is 3.34, the speedup ratio of 

4GB transcoding time is 3.68, the speedup ratio of 6GB transcoding time is 3.82, and the speedup 

ratio of 10GB transcoding time is 3.82. The speedup is 1.89, and the speedup for 50GB transcoding 

time is 1.94. When the number of nodes is 6, the speedup ratio of 1GB transcoding time is 4.32, the 

speedup ratio of 2GB transcoding time is 4.86, the speedup ratio of 4GB transcoding time is 5.24, 

the speedup ratio of 6GB transcoding time is 5.56, and the speedup ratio of 10GB transcoding time 

is 5.56. The speedup ratio is 5.61, and the speedup ratio of 50GB transcoding time is 5.87. The 

distributed transcoding system has excellent performance in its parallelism. Compared with 1, 2, 4, 

and 6 GB datasets, 10 and 50 GB datasets have greater speedup when transcoding in the system. 

This means that the system shows good performance when dealing with large-sized datasets. 

4.2. The Impact of Changing the Cluster Block Size and the Number of Block Replicas on 

Transcoding Performance 

This paper tests the total time for the system to transcode different datasets under the conditions 

of different block sizes (default: 64MB) and different number of block replicas (default: 3) in HDFS 

settings. In the experiment, the set size options of Block are: 32, 64, 128, 256 and 512MB; the set 

number of copies options are: 1, 2, 3, 4 and 5. Table 2 shows the total transcoding time of the 

system for different datasets under different number of block replicas. 

Table 2. System transcoding time under different number of block copies 

Number of block replicas 

Data set 

1GB 2GB 4GB 6GB 10GB 50GB 

1 305 592 1356 2768 3214 15830 

4 319 534 986 1882 2323 11164 

5 326 525 993 1852 2315 11195 

 

From the experimental results in Figure 3, it can be clearly observed that the system obtains the 

best transcoding time performance, or when the number of replicas of the block is set to 4. because 

when the number of copies is set to 1, too many replicas will waste the storage space of the system. 

Setting the number of block replicas to 4 can prevent data loss when nodes fail during distributed 

transcoding of large-scale videos. situation, making the system more stable and reliable. 
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Figure 3. System transcoding time (s) under different number of block copies 

5. Conclusion 

This paper uses the size and stability of the shared file system to build a large-scale video 

database, which solves the shortcomings of traditional central storage devices such as high 

requirements and difficult expansion. According to development and implementation, the amount of 

video data is huge. Video data size. storage requirements. Through the real-time scheduling of the 

distributed system, each working node can effectively cooperate according to the dynamic working 

environment, thereby reducing the overall video transcoding time. The stand-alone transcoding 

system has higher requirements on computer hardware configuration, while the distributed 

transcoding system needs to be assembled with ordinary computers, and the conversion speed of the 

entire video will be faster. Use a divide-and-conquer scheme, dividing the file into appropriately 

sized chunks and transcoding the entire file by transforming each chunk in parallel. 
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