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Abstract: This study improves the reliability of content conformity evaluation through 
causal reasoning. To address the limitations of large language models in reasoning 
reliability, a generator-validator collaborative framework is constructed. It integrates causal 
interpretation and reasoning tasks through a "generate-validate-correct" closed-loop 
mechanism, tackling challenges of high-dimensional sparsity and unstructured data. The 
traditional chain-of-thought method lacks process supervision, leading to logical 
discontinuity and error accumulation. Research has achieved breakthroughs through three-
stage innovation: in the mathematical reasoning scenario, the generator constructs a 
structured reasoning path and maps it to mathematical expressions, the validator provides 
fine-grained feedback, and the model accuracy and reliability have been significantly 
improved through six datasets validation and ablation experiments; The dimensions of 
causal reasoning are unified for causal inference and explanation generation. The generator 
extracts text causal relationships, and the validator generates natural language explanations 
to optimize the inference chain. Multi dimensional evaluation indicators and new quality 
scores are used to verify effectiveness, and the ablation experiment clarifies the impact of 
feedback forms; Under the requirement of autonomous causal reasoning, a causal chain 
prompt framework is designed to transform the five step process of variable identification, 
relationship extraction, adjacency matrix initialization, independence evaluation, and 
hypothesis generation into executable prompt engineering. The intermediate process 
explicit output is achieved by integrating do calculus and d-separation principle, and 
breaking through data dependence by combining few sample learning. Experiments 
confirm the framework enhances reasoning accuracy, reduces long-term dependency errors, 
and improves interpretability. Future work will explore multimodal fusion and self-
validation to advance reliable, interpretable cross-modal causal inference. 

1. Introduction 

This study focuses on the application of causal reasoning methods in evaluating content 
conformity experiments. The background is rooted in the essence of reasoning as a cognitive 
activity - forming conclusions through evidence, arguments, and logic. Although large models have 
shown potential applications in mathematics, common sense, symbols, logic, and multimodal 
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reasoning, causal reasoning faces core challenges due to the high-dimensional sparsity [1], 
unstructured nature, and complex context of natural language data. LLM self supervised learning [2] 
easily confuses causal and statistical correlations, and lags behind human cognitive levels in 
performance; The traditional thinking chain method relies on result feedback and lacks process 
supervision, leading to logical discontinuity and error accumulation; Multi step reasoning suffers 
from long-range dependency defects, lack of self validation, and low domain adaptation efficiency; 
The transition from correlation to causality in causal reasoning is difficult, and data dependence and 
probabilistic output lead to explanatory loss. The existing literature challenges include the lack of 
feedback mechanisms, which makes it difficult to verify the inference path, multi-step inference 
bottlenecks that limit complex task processing, and causal inference ability evaluation indicators 
limited to text similarity. The motivation of this article is to improve the logical rigor, accuracy, and 
interpretability of the model through collaborative multi-step reasoning frameworks and reasoning 
paradigms. The specific goal is to build a generator validator collaborative framework to implement 
process based feedback optimization, integrate causal relationships and causal prompt chains to 
enhance interpretability, and break through the performance bottleneck of LLM in complex 
reasoning tasks. The contribution is mainly reflected in three aspects: firstly, proposing a generator 
validator collaborative multi-step reasoning framework, which addresses mathematical reasoning 
chain errors and achieves continuous optimization through stepwise reasoning paradigms and 
mathematical expression mapping; Secondly, deeply coupling causal reasoning with explanation 
generation tasks and introducing new causal explanation quality evaluation indicators to overcome 
the limitations of traditional indicators; Thirdly, propose an autonomous causal reasoning method 
based on causal chain prompts, integrate Pearl causality diagram theory [3] to design a five step 
reasoning process, and combine few sample learning to solve the problem of scarce training data. 

2. Correlation theory 

2.1 Reasoning task classification and prompt engineering method 

As the core mechanism of cognitive processes, reasoning can be divided into six categories 
based on logical structure and conclusion certainty: deduction, induction, causation, analogy, 
causality, and probabilistic reasoning. Deductive reasoning [5] is based on the inevitability of 
formal logic, and the conclusion strictly follows the semantic implication relationship of the 
premise, which is typically applied in mathematical proofs; Inductive reasoning derives general 
conclusions from samples, and its credibility depends on the representativeness of the samples. It is 
commonly used in summarizing natural science laws; Causal reasoning selects hypotheses by 
constructing the best explanatory model, following the Occam's Razor principle[6]; Analogical 
reasoning plays a crucial role in interdisciplinary research by achieving knowledge transfer through 
cross domain structural similarity; Causal reasoning focuses on identifying causal relationships 
between events, involving the removal of confounding factors and the evaluation of causal effects, 
and is the foundation of scientific decision-making; Probabilistic reasoning is based on Bayesian 
framework to quantify uncertainty and is widely used in risk analysis and machine learning. These 
reasoning paradigms have significant differences in conclusion strength, applicable scenarios, and 
cognitive costs, and adaptation strategies need to be selected based on task requirements. In the 
field of prompt engineering, the breakthrough in the ability of big language models is due to 
innovative methods such as instruction learning, context learning, and thought chain. Instruction 
learning builds an input-output template ternary framework through natural language instructions, 
such as FLAN which improves zero sample generalization ability through multitasking instruction 
fine-tuning; Context learning achieves task adaptation without parameter updates through task 
descriptions and sample prompt templates, reflecting the meta learning potential of language 
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models; The thought chain enhances the performance of complex tasks by introducing step-by-step 
deduction logic, and its topological structure has evolved from a single chain to tree, schema, and 
hybrid modal architectures, significantly improving interpretability in arithmetic, common sense, 
and symbolic reasoning. These prompt methods collectively push the performance boundaries of 
large language models in inference tasks, providing key technical support for the logical foundation 
of intelligent systems. 

2.2 The Technological Evolution and Representative Architecture of Large Language Models 

The technological evolution of big language models, represented by the GPT series, ChatGLM 
series, and LLaMa series, demonstrates a dual breakthrough in parameter scale expansion and 
architecture innovation. Since the first generation model GPT-1 (117 million parameters) in 2018, 
the GPT series has adopted a two-stage training strategy (unsupervised pre training+supervised 
fine-tuning) and gradually developed to GPT-4, with parameter scales reaching billions, achieving 
joint understanding and generation of graphics and text. Through reinforcement learning and human 
feedback mechanisms, the accuracy of content is improved, approaching human level in tasks such 
as complex mathematical problem solving and cross language understanding. The ChatGLM series 
was proposed by Tsinghua University, based on the Transformer architecture and using a joint 
training strategy of dynamic masking and sequence rearrangement. Its pre training objectives 
include autoregressive blank filling (as shown in equation (2-1), Zm is the permutation set of all 
possible index sequences of length m, szi is the first i label sequences, and the model predicts 
masked tokens through autoregression) and multi task pre training (document level and sentence 
level objectives). The GLM-130B model is pre trained on 400 billion token corpora and 
outperforms GPT-3 in MMLU benchmark few sample learning, with LAMBADA accuracy 
reaching 80.2%. The LLaMa series was developed by Meta. The first generation of LLaMa is based 
on an improved Transformer architecture, introducing pre normalization strategy and rotation 
position encoding. The 65B parameter version is comparable to GPT-3 in language understanding 
benchmark; LLaMa2 expands the context window to 4096 tokens, completes 2 trillion token 
training in combination with course learning, and integrates reinforcement learning classifiers to 
reduce harmful output rates to below 0.01%; LLaMa3 improves inference efficiency by 30% 
through group query attention technology and constructs a hybrid system of 8 expert sub networks. 
After multi-stage instruction fine-tuning, the accuracy of GSM8K mathematical inference 
benchmark reaches 85.3%, which is 14.2 percentage points higher than the previous generation. 
These models promote the evolution of natural language processing technology towards 
specialization and security through architectural innovation and open source ecosystem construction. 

3. Research method 

3.1 Theoretical Framework and Hierarchical Architecture of Causal Reasoning 

The theoretical system of causal reasoning is based on two pillars: the latent outcome model and 
the structural causal model. The latent outcome model was proposed by Neyman and Rubin, which 
quantifies causal effects through counterfactual results. Its mathematical expression is 

 τi = Yi(1) − Yi(0) (1) 
among them, Yi (1) and Yi (0) respectively represent the potential outcomes of individual i when 

receiving intervention (T=1) and when not receiving intervention (T=0), and the theoretical 
boundaries of observational studies are constructed based on the three hypotheses of "stability, non-
interference, and consistency". The structural causal model, based on Pearl's research results, 
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describes the data generation process (DGP) through three core modules: causal diagram, structural 
equation system, and counterfactual reasoning[7]. Its standard causal diagram includes intervention 
variables (T), confounding covariates (Z), and response variables (Y), forming a systematic 
mathematical framework for causal relationships between variables. Causal inference can be 
divided into three levels: correlation level focuses on variable correlation pattern mining, laying the 
foundation for tasks such as image recognition and natural language processing; The hierarchy of 
cause effect tracing evaluates the effectiveness by applying specific interference, such as observing 
changes in user click through rates after adjusting algorithms in intelligent recommendation systems; 
The causal hierarchy (counterfactual inference) explores the action strategies required to achieve 
specific results, such as intelligent customer service systems optimizing dialogue strategies through 
counterfactual analysis to enhance customer satisfaction. These theoretical frameworks and 
hierarchical structures together form the scientific foundation of causal reasoning, supporting 
complex system analysis and decision support applications. 

3.2 Research on Mathematical Reasoning Optimization of Generator Validator Collaborative 
Closed Loop Framework 

This article proposes a collaborative multi-step reasoning framework (CRMR) based on 
generator validator and a stepwise reasoning paradigm (SSR) [8], which optimizes the mathematical 
reasoning path through a "generation validation feedback" closed-loop mechanism. The CRMR 
framework consists of three main modules: the generator generates a preliminary thought process 
with logical steps, the validator gradually verifies and provides feedback on calculation errors, and 
the generator iteratively optimizes solutions based on feedback. The SSR paradigm decomposes 
unordered reasoning into ordered steps, such as mapping "4 boxes x 2 strips/box=8 scarves" to 
mathematical expressions. Generator training uses mean square error loss function 

 LG = 1
N
∑ (ai − gti)2N
i=1   (2) 

ai  is the predicted answer, gti  is the true label); The validator constructs a dataset through 
sampling inference paths, using 

 LV = 1
N
∑ ∑ �fij − feedbackij�N

j=1
2N

i=1  (3) 

Optimize feedback accuracy. The experiment was validated on datasets such as SVAMP and 
SingleEq, providing feedback on text integration issues, initial thinking processes, correction 
prompts, and instruction templates to achieve precise error localization and logical correction, 
significantly improving the accuracy and reliability of mathematical problem solving. 

3.3 Experimental analysis of mathematical problem solving based on collaborative multi-step 
reasoning framework 

In mathematical problem-solving tasks, the collaborative multi-step reasoning framework 
significantly improves the inference performance of the model through the interactive feedback 
mechanism between the generator and validator. Taking the GSM8K dataset as an example, the 
response comparison of ChatGLM2 model under three methods is demonstrated: when the 
generator independently answers, the inference step is incorrect due to the lack of verification 
module; After introducing the thought chain, the model can gradually deduce the correct answer; 
After combining with the validator, the generator can correct erroneous reasoning based on 
feedback and ultimately obtain accurate results. Table 1 further validates the universality of this 
method on multiple models - in open source models such as ChatGLM2, LLaMa-2-7B/13b, GPT 2-
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Large, and DeepSeeker V3, the collaborative inference method achieved performance 
improvements of 5.84% -16.20% compared to the baseline, with GPT 2-Large achieving an 
accuracy improvement of 16.20% on the GSM8K dataset.(As shown in Table 1) 

Table 1 Open source big model mathematical reasoning performance evaluation focuses on three 
major indicators 

Model Parameter 
Size Method AddSub MultiArith SingleEq SingleOp SVAMP GSM8K 

GPT2-
Large 774M Standard Prompt 40.00 83.17 44.23 52.48 52.20 66.85 
GPT2-
Large 774M Self-Consistency 43.29 85.26 47.89 52.84 56.50 69.93 
GPT2-
Large 774M CoT 47.34 90.72 52.94 63.23 64.40 73.63 
GPT2-
Large 774M Generator+Verifier 56.20 89.00 56.82 77.56 67.70 78.97 

ChatGLM2 6B Standard Prompt 79.00 91.78 86.42 91.27 85.20 75.00 
ChatGLM2 6B Self-Consistency 80.00 93.42 87.34 91.83 85.50 75.36 
ChatGLM2 6B CoT 82.52 95.75 88.69 92.31 86.30 77.64 
ChatGLM2 6B Generator+Verifier 84.84 99.66 90.33 95.72 89.80 82.52 
LLaMa-2 7B Standard Prompt 80.69 90.16 88.28 92.34 87.50 78.61 
LLaMa-2 7B Self-Consistency 82.73 92.21 91.41 93.69 89.90 80.32 
LLaMa-2 7B CoT 83.60 95.23 92.35 94.73 91.20 82.57 
LLaMa-2 7B Generator+Verifier 86.04 98.34 94.39 97.27 93.90 85.05 
LLaMa-2 13B Standard Prompt 84.24 94.68 91.35 93.59 89.30 79.13 
LLaMa-2 13B Self-Consistency 86.12 95.43 92.47 95.03 91.20 81.49 
LLaMa-2 13B CoT 88.93 95.69 93.71 96.47 93.30 83.05 
LLaMa-2 13B Generator+Verifier 93.03 98.58 95.38 98.37 95.10 86.70 

DeepSeek-
V3 671B Standard Prompt 86.08 94.17 85.32 88.61 85.80 84.23 

DeepSeek-
V3 671B Self-Consistency 89.32 95.64 86.17 91.35 87.40 86.24 

DeepSeek-
V3 671B CoT 92.18 96.08 89.02 92.75 88.90 87.97 

DeepSeek-
V3 671B Generator+Verifier 95.76 98.25 91.36 94.13 92.10 90.58 

 
The closed source model experiment showed that Gemini Pro and GPT-4 improved their 

accuracy by 11.55% and 11.71% respectively after applying the collaborative inference framework, 
indicating that even with strong baseline models, inference performance can still be optimized 
through feedback mechanisms. The multi-path sampling experiment of ChatGLM2 on six datasets 
shows that the collaborative inference method exhibits more stable performance gains with 
increasing sampling paths, especially on complex datasets such as MultiArith and AddSub. The 
impact of inference step length on performance is revealed by revealing that when the inference 
step size is 1-2, the model performs best on the SingleOp and AddSub datasets; After increasing the 
step size to 4, the accumulation of errors leads to a significant decrease in accuracy. Using the 
example of GPT2 Large with a stride of 3 on the AddSub dataset, it is demonstrated that an 
excessively long inference path may lead to semantic comprehension bias. The ablation experiment 
verified the effectiveness of the stepwise reasoning paradigm (SSR) - on five datasets, the SSR 
format had an accuracy rate 0.8% -6.5% higher than the original reasoning format, and its structured 
steps helped to accurately locate errors. The comparison between self reflection and collaborative 
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reasoning shows that the performance improvement of the generator under the feedback of the 
validator reaches 6.3% -24.8%, which verifies the key role of the validator in compensating for the 
self reflection deficiency of the generator. The collaborative multi-step reasoning framework 
effectively improves the logical rigor and result accuracy of large language models in mathematical 
reasoning tasks through generator validator interaction, stepwise reasoning paradigm, and multi 
round feedback mechanism, providing interpretable optimization paths for complex reasoning tasks. 

4. Results and discussion 

4.1 Collaborative multi-step reasoning framework for causal reasoning in natural language 

The digital health platform follows the core idea of "countless carriers", which means that the 
platform does not own the data ownership, but only has the right to use and operate it under 
authorization, helping data owners achieve value generation and realization. In terms of health 
management data storage, blockchain distributed storage supports synchronization and verification 
of content change validity among nodes, achieves access control and privacy protection through 
asymmetric encryption, and can build different architectures such as public chains, private chains, 
and consortium chains according to individual and group health service models, adapting to 
different privacy level requirements - public chains support arbitrary user queries and transaction 
confirmations, suitable for personal data service scenarios; Private chains restrict write permissions 
to specific institutions, while read permissions can be flexibly restricted, making them suitable for 
medical knowledge accumulation and cost control in medical or research institutions. To incentivize 
users to share health data, a consensus mechanism based on Proof of Health Data Asset Value 
(PoDAV) is designed: the value of health data assets is measured by reliability (reflecting data 
quality and demand matching) and liquidity (reflecting transaction frequency and scale). The 
PageRank algorithm [8] is used to rank users and select the top N as validators. After paying a 
deposit, a pseudo-random number is used to select new block initiators; The consensus process 
consists of two rounds of voting, both using Byzantine fault-tolerant methods - in the first round of 
preparation stage, validators cast preparation votes, and if more than 2/3 of the valid votes are cast, 
the process enters the second round of confirmation stage. Each round of voting validators can 
receive a reward of 1.5x tokens; Successfully adding a compliant new block will reward 1x tokens, 
while voting failure will result in a loss of 0.5x tokens. This mechanism promotes the circulation 
and value appreciation of health data assets through token incentives and punishments, and drives 
the transformation of health management from traditional models to data ownership, assetization, 
and personalized services. 

4.2 Model experiment 

Causal reasoning prioritizes inferring potential mechanisms rather than simple associations. The 
collaborative multi-step reasoning framework integrates causal reasoning and interpretation 
generation through three steps: the generator performs initial causal reasoning and outputs 
preliminary results; Validator generates auxiliary explanations to clarify causal relationships; The 
generator corrects the answer based on feedback from the validator.The generator is trained using 
cross entropy loss on the e-CARE dataset [9]. For samples containing premises and two hypotheses, 
the model predicts the probabilities P1 and P2of hypothesis 1 and hypothesis 2, with a loss function 
of: 

 L = − 1
N
∑ [Yi log P1(Xi) + (1 − Yi) log P2(Xi)]N
I=1  (4) 
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among them,Yi∈ {0,1} represents the correct hypothesis (0 is hypothesis 1, 1 is hypothesis 2). 
As a sequence to sequence task, the validator optimizes the interpretation through cross entropy 

loss to generate: 

 L = −∑ log p(Yt|y<t, X)T
t=1  (5) 

among them, Yt is the t-th morpheme of the explanation. 
The experiment used the COPA (1000 daily causal inference multiple-choice questions) and e-

CARE (over 21000 causal inference questions with conceptual explanations) datasets. The task 
format includes multiple-choice questions (selecting reasons/results) and binary classification 
(determining causal relationships).The BLEU metric quantifies the similarity between generated 
text and reference text through n-gram accuracy and short penalty (BP), and its calculation formula 
is 

 BLEU = exp(∑ ωn log PnN
n=1 ) ∙ BP (6) 

among them, Pn is the accuracy of n-gram matching, and ωnis the weight coefficient. ROUGE-N 
focuses on n-gram recall rate, defined as 

 ROUGE − N =
∑ Countmatch(gramn)gramnϵS

∑ Count(gramn)gramnϵS
 (7) 

Directly measure the degree of overlap between the generated text and the reference text. Causal 
Explanation Quality (CEQ) innovatively introduces incremental evaluation of causal strength, 
through 

 ∆cs= cs(C, E|X) − cs(C, E) (8) 
The enhancement effect of quantitative explanation on causal relationship, where csC and EX 

are the causal strength of cause C and result E given explanation X, calculated based on corpus 
word level association and introduced with a penalty coefficient α=0.66 to correct the association 
strength. The three constructed a multi-level model performance evaluation system from three 
dimensions: text similarity, semantic overlap, and causal mechanism analysis, jointly supporting the 
quantitative verification of logical coherence and explanatory credibility in causal reasoning tasks. 

4.3 Effect analysis 

In causal inference tasks, testing of 11 mainstream models (such as LLaMa2, GPT series, 
DeepSeek-V3, etc.) showed that generative models (such as LLaMa2-13B, DeepSeek-V3) 
performed better than discriminative models (such as BERT, RoBERTa) on COPA and e-CARE 
datasets due to autoregressive mechanisms, with DeepSeek-V3 achieving the best results in all four 
evaluation dimensions (as shown in Table 2) 

Verified the positive correlation between model size and causal reasoning ability. In the 
explanation generation experiment, GPT-2 outperformed RNN and BERT based based based on 
BLEU-1 (53.19), ROUGE-1 (26.85), and causal interpretation quality (0.102) indicators, 
demonstrating its advantages in short word matching and long text similarity between generated 
text and reference interpretation. The collaborative reasoning experiment improves performance 
through the "generator+validator" framework: compared with the baseline (generator reasoning 
alone) and the chain of thought (CoT) method, this framework achieves the highest accuracy in 
multiple choice/binary classification tasks of COPA and e-CARE, proving that the auxiliary 
interpretation provided by the validator can enhance the generator's analysis of complex causal 
relationships (as shown in Figure 1). 
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Table 2 Model Performance Comparison 

Model COPA e-CARE Choice Binary Choice 
Bart-base 57.80 63.07 71.47 64.25 

Bert-base-cased 61.20 50.36 73.25 65.96 
RoBERTa-base 68.20 64.20 70.78 59.34 

XLNet-base-cased 64.50 72.59 75.92 69.63 
ALBERT 54.30 65.28 72.16 66.71 

GPT 53.20 58.41 63.36 62.26 
GPT-2 69.00 71.53 68.73 72.91 

ChatGLM2-6B 74.60 69.38 78.75 79.02 
LLaMa2-7B 76.30 68.51 80.34 75.06 
LLaMa2-13B 81.90 78.29 82.62 78.64 

DeepSeek-V3* 90.20 89.52 87.35 85.93 

 

Figure 1 Model Performance Comparison under Different Auxiliary Text Conditions 

The ablation experiment further validated the importance of high-quality explanations: 
simplifying the explanatory text generated by the validator significantly reduced the accuracy of 
model collaborative reasoning (such as DeepSeeker V3 dropping from 95.42% to 91.37%); 
Example comparison of original/simplified explanations); However, random feedback (non causal 
interpretation) leads to a significant decrease in the inference performance of the generator (such as 
DeepSeeker V3 dropping from 95.24% to 88.49%); Showing examples of normal/random feedback. 
These results collectively support the superiority of the "generator validator" collaborative 
framework in integrating causal reasoning and interpretation generation tasks, and promote the 
development of causal reasoning applications in practical scenarios such as intervention analysis 
and hybrid control. 

5. Conclusion 

This study focuses on the two core challenges of complex reasoning in large language models - 
insufficient reasoning reliability and causal reasoning ability deficiencies. An innovative generator 
validator collaborative framework is constructed to form a "generation validation correction" 
closed-loop mechanism, achieving deep integration of causal interpretation and reasoning tasks. 
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Specifically, a three-stage breakthrough is achieved: in the mathematical reasoning scenario, the 
generator constructs a structured multi-step reasoning path and maps it to an explicit mathematical 
expression, and the validator corrects the path through fine-grained feedback. Six datasets and 
ablation experiments have shown that this design significantly improves the accuracy and reliability 
of the model; In the dimension of causal inference, the task of unifying causal inference and 
explanation generation is carried out. The generator extracts causal relationships from the text, and 
the validator generates natural language explanations to optimize the inference chain. Multi 
dimensional evaluation indicators and a new type of causal explanation quality score are used to 
verify the effectiveness, and the impact of different feedback forms on performance is clarified 
through ablation experiments; To meet the demand for autonomous causal reasoning, a causal chain 
prompt framework is designed. Through a five step process of variable identification, relationship 
extraction, adjacency matrix initialization, independence evaluation, and hypothesis generation, 
structured causal reasoning is transformed into executable prompt engineering. The do algorithm 
and d-separation principle are integrated to achieve explicit output in the intermediate reasoning 
process, and the few sample learning mechanism is used to break through the dependence on large-
scale annotated data. Experimental and robustness analysis confirm that the framework breaks 
through the bottleneck of causal reasoning in large models. Future research will explore multimodal 
fusion (such as geometric visual language joint modeling), endogenous self validation ability [10] 
(based on attention mechanism to locate logical loopholes), and PDAG causal inference 
enhancement (through subtask extension and fine-tuning integration), promoting the development 
of large-scale model inference ability towards more complex and reliable cross modal causal 
inference. 
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