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Abstract: With the deep integration of cloud–edge collaboration and artificial intelligence, 
image-based intelligent perception has been widely applied in fields such as healthcare and 
marine science. However, the traditional “cloud-side training—cloud/edge inference” 
paradigm faces challenges including bandwidth pressure, inference latency, deployment 
difficulty, and accuracy degradation caused by limited edge computing power and 
imbalanced sample distribution. To address these issues, this paper proposes a “cloud–
edge collaborative image recognition task offloading framework driven by federated 
learning for training–inference collaboration and resource optimization.” The framework 
focuses on three aspects: integrated training–inference, collaborative inference offloading, 
and federated aggregation weighting. First, a cloud–edge integrated training–inference 
task offloading model is constructed, formally characterizing the task–resource–data 
relationships. Using containerization and YAML orchestration, we implement an end-to-end 
workflow covering cloud training, image distribution, and edge deployment, and build an 
experimental platform based on Kubernetes/KubeEdge, which significantly reduces data 
transmission time and overall execution latency. Second, to tackle the problems of limited 
edge computing capacity and low confidence of lightweight models, we propose a 
collaborative inference migration strategy triggered by overload conditions and the upward 
transmission of low-confidence samples. This strategy is integrated as a plugin into the 
Kubernetes/KubeEdge/Sedna framework and is validated in pathological image analysis and 
marine fish recognition scenarios, demonstrating improvements in inference efficiency and 
recognition accuracy. Finally, to address the imbalance of local data samples in federated 
learning, we introduce a weighted aggregation method that simultaneously considers local 
model accuracy, stability, and sample size. This approach increases the contribution of high-
quality local models in global aggregation. Experimental results show that the proposed 
method outperforms FedAvg under multiple imbalanced scenarios, effectively enhancing 
global model accuracy and robustness. Overall, the proposed framework realizes a closed 
loop between training and inference with collaborative optimization, providing a scalable 
engineering solution for large-scale, real-time, and high-accuracy cloud– edge image 
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recognition applications.  
1. Introduction 

In recent years, the deep integration of cloud computing, edge computing, and artificial 
intelligence has driven the widespread adoption of image recognition in fields such as healthcare, 
marine monitoring, and security. The cloud excels at training and storage, while the edge is suited for 
low-latency inference; cloud–edge collaboration has thus become a key pathway to ensure both real-
time performance and accuracy. However, current research still faces several challenges: training and 
inference processes remain decoupled, lacking closed-loop management and resulting in low iteration 
efficiency; edge resources are limited, lightweight models suffer from insufficient accuracy, and 
computational bottlenecks are evident; collaborative inference lacks dynamic resource awareness and 
elastic migration mechanisms; and federated learning experiences accuracy degradation under data 
imbalance, undermining overall performance. 

To address these issues, this study aims to build a cloud–edge collaborative framework that 
integrates closed-loop training – inference, efficient edge inference, and precise federated 
aggregation, thereby improving the usability and robustness of image recognition systems in 
distributed environments. We propose a “cloud–edge collaborative task offloading framework 
driven by federated learning for training–inference collaboration and resource optimization,” 
which realizes an end-to-end automated process from training, image creation, and distribution to 
inference; introduces a collaborative inference strategy based on a dual-trigger mechanism of load 
and confidence for dynamic task migration; and designs a federated weighted aggregation method 
incorporating accuracy, stability, and sample size, enhancing the contribution of high-quality models 
while mitigating imbalance effects. 

The main innovations are as follows: proposing a training–inference integrated task offloading 
model to achieve closed-loop management and automated deployment; designing a dual-trigger 
collaborative inference mechanism for resource-constrained scenarios to reduce latency and blocking; 
introducing a federated dynamic aggregation strategy based on multi-dimensional evaluation to 
improve global model accuracy and robustness; and implementing a prototype system on Kubernetes, 
KubeEdge, and Sedna. Experiments in medical and marine scenarios demonstrate significant 
improvements in efficiency, accuracy, and latency, highlighting the framework’s scalability and 
application value. 

2. Related Research 

In the field of distributed intelligent perception, federated learning has emerged as an important 
paradigm in recent years, attracting widespread attention for its advantages in data privacy protection 
and cross-domain modeling. Zhang C [1]systematically expounded the mechanism by which 
federated learning protects data privacy through local training and model transmission, and 
comprehensively reviewed its current state and key challenges across five dimensions: algorithms, 
communication, systems, privacy, and applications. The study highlighted that practical deployment 
still faces critical issues such as communication overhead, system heterogeneity, and security 
protection. Further, Chen H [2]Y focused on the conflict between generalization and personalization 
performance caused by data distribution differences in federated learning, and proposed the Fed-RoD 
framework, which jointly optimizes global generalization and local personalization objectives, 
offering a new perspective for addressing the trade-off between adaptability and robustness in 
distributed scenarios. 
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Meanwhile, cloud–edge collaboration has rapidly developed as an important technical pathway 
to address limited computing power, constrained bandwidth, and stringent real-time requirements. 
Bao G [3]pointed out that the integration of cloud–edge collaboration and federated learning remains 
at an early stage, particularly with significant gaps in key technologies, practical challenges, and 
application integration, necessitating systematic exploration. Regarding specific mechanisms, Gu H 
[4]proposed a cloud–edge–end collaborative network based on deep reinforcement learning, which 
effectively solves dynamic decision-making problems such as task offloading and resource allocation, 
demonstrating the potential of intelligent scheduling in complex environments. Furthermore, Wang 
B [5]emphasized that task offloading in edge cloud computing still faces bottlenecks, and established 
a classification framework that summarizes various offloading strategies and their applicable 
scenarios[6], while also indicating that future research should balance system performance 
optimization with industrial deployment[7]. 

In summary, federated learning research has provided a solid theoretical and methodological 
foundation for distributed modeling and privacy protection, while cloud–edge collaboration research 
has gradually advanced task offloading and dynamic resource management [8]. However, most 
existing work focuses on optimizing single dimensions, and has yet to form an integrated closed loop 
covering model training, inference deployment, resource scheduling, and federated aggregation [9]. 
To bridge this gap [10], this paper proposes a “cloud–edge collaborative image recognition task 
offloading framework driven by federated learning for training–inference collaboration and resource 
optimization [11],” which integrates the above research directions and addresses current limitations, 
thereby enhancing the real-time performance, accuracy, and robustness of large-scale distributed 
image recognition applications [12]. 

3. Cloud– Edge Collaborative Image Recognition: Modeling and Integrated Training–
Inference Implementation 

3.1. Task – Resource – Data Modeling and Optimization Objectives in Cloud – Edge 
Collaboration 

In cloud–edge collaborative image recognition scenarios, tasks, resources, and data constitute the 
core elements of the overall system. From a unified modeling perspective and in combination with 
the federated learning paradigm, this study proposes a collaborative optimization framework for 
integrated training and inference. The goal is to achieve a closed-loop linkage of training, model 
image construction and distribution, and edge inference, while balancing latency, energy 
consumption, and accuracy under data privacy protection. This modeling draws on the concept of 
integrated orchestration in prior work, but extends it in terms of task granularity, optimization 
objectives, and federated learning constraints. 

From the perspective of system composition, cloud nodes undertake high-performance training 
and model aggregation, while edge nodes focus on real-time inference and local incremental training. 
Resources cover computing, storage, bandwidth, and energy consumption, which need to be 
reasonably allocated between cloud and edge. Tasks include training, image construction, distribution, 
and inference, and are coupled through data flows: raw training data remain on the edge, with only 
parameters or gradients uploaded; the cloud generates model images and distributes them to the edge; 
inference results and feedback from the edge are then returned to the cloud to trigger incremental 
training and model updates. System operation must satisfy multiple constraints. Capacity constraints 
require that task allocation and resource demands at each node do not exceed its capability. Latency 
constraints stipulate that end-to-end latency must remain within the threshold, covering training, 
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image construction and distribution, inference, and transmission. Privacy constraints prohibit direct 
leakage of edge data, which may only participate in training via federated learning. Model version 
consistency and deployment reliability must also be ensured to prevent service interruptions caused 
by frequent updates. For optimization objectives, this study introduces multi-objective functions to 
balance latency, energy consumption, bandwidth, and accuracy. A weighted-sum approach can 
minimize latency, energy, and bandwidth overhead while improving recognition accuracy. 
Alternatively, a hierarchical optimization strategy can first ensure latency and privacy constraints, 
then further reduce energy and bandwidth consumption within the feasible region, and finally enhance 
model accuracy. With the introduction of federated learning, accuracy improvement depends not only 
on single-node performance but also on the extent of participation of edge nodes in training and the 
efficiency of cloud aggregation. 

In practical deployment, the modeling framework naturally aligns with cloud-native architectures. 
Through containerization and YAML-based orchestration, an automated pipeline for training, model 
construction and distribution, and inference can be established. Scheduling strategies between cloud 
and edge are dynamically determined by the system based on resource status and network conditions, 
thereby achieving true integration of training and inference. 

3.2. Integrated Training–Inference Task Offloading Method and Implementation Architecture 

In cloud– edge collaborative image recognition scenarios, the key to achieving integrated 
training–inference lies in constructing a complete closed-loop architecture that encompasses training, 
image construction and distribution, edge inference, and feedback-driven retraining. This architecture 
relies on containerization and declarative orchestration technologies to connect each stage, enabling 
models to transition in a standardized manner from training to deployment and inference, while 
continuously iterating and optimizing during runtime. 

 

Figure 1. Integrated Workflow of Cloud Training and Edge Inference 

As shown in Figure 1, the integrated workflow begins with orchestration instructions defined in 
YAML files, covering the entire process of cloud training, image creation and distribution, and edge 
inference. Specifically, on the cloud side, the system first performs centralized training and model 
aggregation. Training jobs define resource requests, data mounting, and runtime environments 
through container images, which are then allocated by the scheduler according to node load, thereby 
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shortening training time and improving resource utilization. Upon completion, model weights are 
packaged into images and stored in a repository, providing a standardized and versioned foundation 
for subsequent edge inference. In this way, model artifacts are transformed into directly callable 
runtime images, reducing deployment risks caused by environmental differences. 

Edge nodes primarily handle real-time inference tasks. Inference containers define image versions, 
node selectors, resource requests, and runtime parameters through YAML files, and are scheduled to 
suitable edge nodes via the control plane. As task requests fluctuate, the system can automatically 
adjust the number of concurrent replicas, achieving elastic scaling to ensure low latency and high 
availability. When edge node resources are insufficient, inference confidence is low, or network 
conditions permit, the system offloads part of the tasks to the cloud, invoking high-accuracy models 
for verification inference and synchronizing the results back to the edge, thus striking a balance 
between latency and accuracy. 

To further enhance long-term model performance, the system introduces a federated learning 
mechanism. Edge nodes conduct local training without exposing raw data, uploading gradients or 
weight summaries to the cloud. The cloud aggregates these updates to generate new global model 
versions. New models are distributed to edge nodes via the image repository, forming a closed loop 
of “ inference– training– release– reinference.”  Meanwhile, low-confidence samples and 
misclassification information accumulated at the edge are fed back to the cloud, serving as key data 
for the next training round, thereby accelerating model evolution and improving adaptability to 
complex scenarios. Technically, the architecture relies on cloud-native systems such as Kubernetes 
and KubeEdge as unified orchestration and edge management platforms, leveraging image 
repositories for cross-region storage and distribution, and adopting rolling upgrades and canary 
release strategies for smooth iteration. Regarding resource allocation, the system sets lower bounds 
and priorities separately for training and inference, while dynamically determining task offloading 
and collaborative triggers through threshold functions that account for edge load, cloud queuing, 
network availability, and target accuracy. At the deployment and operations level, small-batch 
iterations and partitioned canary releases mitigate model update risks, while observability metrics 
provide monitoring and optimization across the entire pipeline. 

The proposed integrated training – inference task offloading method and implementation 
architecture unify training, inference, and resource optimization, forming a dynamic balance and 
continuous optimization mechanism between cloud and edge. It not only inherits the engineering 
advantages of containerization and declarative orchestration, but also incorporates federated learning 
and collaborative strategies to endow the system with adaptive evolution capabilities, thereby offering 
a scalable, observable, and continuously optimized implementation pathway for cloud– edge 
collaborative image recognition. 

4. Cloud–Edge Collaborative Inference Optimization and Federated Aggregation Methods 

4.1. Collaborative Inference Migration Strategy and Implementation for Resource- 
Constrained Scenarios 

The essence of collaborative inference migration lies in deciding when to remain at the edge and 
when to offload to the cloud. To this end, the system introduces three lightweight decision signals at 
key stages of request arrival and inference execution: network-side reachability and transmission time, 
edge-side resource load thresholds, and model-side inference confidence thresholds. On the network 
side, the system estimates the minimum achievable transmission time for a unit task and compares it 
with the actual transmission time to determine whether conditions for data uplink are met. Building 
on this, it then observes whether edge resources such as CPU and memory have exceeded load limits. 



International Journal of Big Data Intelligent Technology 

99 

If the threshold is exceeded and the network is available, tasks are migrated to the cloud; if resources 
are constrained but the network is unavailable, the system remains in a listening state until either 
“resource release,” in which case local inference continues, or “network availability,” in 
which case migration is triggered. This two-stage decision process effectively avoids the queuing and 
rollback costs of blind cloud offloading. 

On the model side, after the lightweight edge model produces an initial prediction, the system 
extracts the maximum class probability of each image as a confidence indicator and compares it with 
a minimum tolerance threshold. Samples falling below this threshold are regarded as “hard cases” 
and are automatically sent to the cloud for secondary recognition by a high-capacity model. In this 
way, while maintaining the overall latency budget, the system significantly reduces misclassifications 
and missed detections at the edge. The “low-confidence trigger—cloud verification” strategy 
enables the edge to handle only high-certainty subsets, while the cloud concentrates on complex 
samples, forming a clearly defined inference pipeline. 

This three-signal triggering mechanism not only provides criteria for deciding whether to migrate 
or retain tasks, but also directly shapes runtime resource usage curves and total completion time. 
Comparative experiments against the default joint inference strategy of Sedna show that the proposed 
trigger–migration mechanism achieves a better balance in total completion time, edge completion 
time, and average resource utilization. The results demonstrate that enabling the edge to “do less 
but faster”  while letting the cloud conduct “hard case verification”  contributes to overall 
performance improvement. 

 

Figure 2. Comparison of Total Inference Task Completion Time 

As shown in Figure 2, in the medical pathology image recognition task, the total task completion 
time of the proposed cloud–edge collaborative inference algorithm is significantly and consistently 
lower than that of Sedna’s default joint inference algorithm. This experimental result directly 
verifies the above conclusion and demonstrates that the dual-trigger collaborative migration strategy 
designed in this paper can effectively optimize system resource utilization and greatly reduce overall 
task execution time. 

To implement the strategy as a runnable system, the platform layer provides unified orchestration 
and observability support. Built on top of Kubernetes, KubeEdge extends edge nodes with 
authentication, offloading, and load-balancing capabilities, establishing a dedicated communication 
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channel for cloud–edge information exchange. This enables the cloud scheduler to accurately 
offload inference containers to designated edge nodes based on nodeSelector/affinity configurations, 
while lightweight message buses (e.g., MQTT) are used to carry trigger signals and status heartbeats. 
Combined with Sedna’s joint inference and continual learning primitives, the process of “resource 
threshold—network judgment—confidence triggering—migration execution” can be encapsulated 
as configurable operators that are orchestrated and reused without modifying business code. 

In integration with federated aggregation, the collaborative inference stage automatically builds a 
“hard-case cache,” including features and inference metadata of low-confidence samples. These 
records, without containing original private data, are abstracted and used for sampling and weighting 
in the next round of aggregation, giving priority to improving the fitting degree in heterogeneous and 
sparse edge distributions. After aggregation, the cloud releases updated models in versioned image 
form, which are smoothly replaced at the edge using rolling or canary strategies. In this way, the 
“hard-case gains from migration” are closed-looped back into “improved inference performance 
in the next round.” This approach is consistent with prior studies, which show that adjusting the 
aggregation contribution of local models can enhance global accuracy under imbalanced data, while 
collaborative inference triggering increases the probability that such samples are selected. 

In summary, the proposed collaborative inference migration strategy for resource-constrained 
scenarios builds on threefold triggers—network judgment, resource constraints, and confidence 
gating—uses cloud–edge native platforms as the execution base, and federated aggregation as the 
long-term evolution mechanism. This forms a dynamic optimal behavior of “offload to the cloud 
when feasible, remain at the edge when sufficient.” Within an engineering system that ensures 
observability and rollback, the strategy not only guarantees latency targets at the edge but also 
leverages cloud verification and federated updates to safeguard accuracy and robustness in complex 
long-tail scenarios. 

4.2. Federated Learning Aggregation Optimization Algorithm for Imbalanced Samples and 
Experiments 

To address aggregation bias caused by heterogeneous data distributions among participants, this 
section designs a “quality-and-scale collaborative weighting” aggregation method within the 
“training–inference collaboration” framework. While retaining the influence of sample size, the 
method introduces model stability and feature recognition capability to evaluate the contribution of 
each local model, thereby generating dynamic aggregation weights to mitigate the impact of 
imbalanced distributions on the global model. This approach targets the limitation of traditional 
FedAvg, which tends to favor nodes with larger datasets under imbalance, and emphasizes a fair 
aggregation that balances both quantity and quality. 

On the cloud side, the algorithm uses a small class-balanced public validation set to evaluate the 
recognition performance of each edge node’s local model across different feature categories, 
producing a per-class accuracy list. From this, the average accuracy and standard deviation across 
features are calculated, where the standard deviation reflects stability. Together with the local training 
sample size (reflecting scale), these factors are normalized and combined to form the contribution 
weight of each node. This process avoids transmitting raw data and can be completed without altering 
the local training strategies of participants. 

In weight construction, let the stability weight be Wi(higher when more stable), the maximum-
class accuracy weight be Ui (reflecting the model’s best recognition ability for key features), and 
the sample-size weight be Bi. After range normalization, the three factors are combined using a 
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power-normalization scheme: Vi = norm(Wi
α ⋅ Ui

β ⋅ Bi
γ) , where α,β, γ  are platform-defined 

hyperparameters set according to the scenario to balance fairness and convergence speed. The 
resulting Vi serves as the aggregation coefficient, applied to the weighted summation of local models 
and parameters to obtain the new global model and parameters: G = ∑

i
V
~
iMi, P = ∑

i
V
~
ipi.  . The 

updated global model is then distributed back to edge nodes for continued local training until 
convergence is achieved. 

From an implementation perspective, the algorithm is integrated into the cloud – edge 
collaboration platform in a plugin-based manner. Within Sedna/Kubernetes, three atomic steps—
public-set evaluation, weight generation, and weighted aggregation—are inserted into the existing 
training–aggregation–distribution loop. This enables seamless integration with task offloading, 
resource orchestration, and inference services, ensuring the integrity and maintainability of the 
training–inference pipeline. The aggregation plugin automatically triggers evaluation and weight 
updates after each training round, allowing the aggregation strategy to adapt dynamically to evolving 
data and models. 

Experiments are designed using pathological image recognition as a case study, with multiple 
control groups. Several sample allocation schemes with different imbalance ratios and heterogeneous 
distributions are constructed. A unified initial model and training program are distributed from the 
cloud, after which participants perform independent local training. On the cloud side, two aggregation 
processes are executed: the proposed optimized aggregation and Sedna ’ s default FedAvg. 
Evaluation metrics include global average accuracy, macro-average F1 score, and recall of the 
weakest class, thereby assessing both overall performance and inter-class fairness. Weight ablation 
studies are also conducted to examine the effect of α,β, γ. Data allocation and comparison procedures 
follow the same basic settings as prior studies, covering multi-level imbalance and cross-participant 
heterogeneity scenarios. 

 

Figure 3: Accuracy Comparison between Optimized Aggregation Method and FedAvg 

Results show that under various imbalance settings, the proposed optimized aggregation method 
significantly increases the effective contribution of high-quality local models, reduces the negative 
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impact of sample heterogeneity on aggregation, and achieves higher global accuracy than default 
FedAvg, as illustrated in Figure 3.This trend remains consistent across different experimental groups. 
Compared with the platform’s default aggregation, the proposed method takes training sample scale 
into account while placing greater emphasis on model quality and stability, thereby demonstrating 
stronger robustness in macro-average metrics and tail classes. 

In summary, based on the “stability–capability–scale” collaborative weighting principle, 
the aggregation optimization mechanism proposed in this section can adaptively correct imbalance 
through lightweight cloud-side evaluation and weighting, without altering the training and inference 
processes at the edge. Implemented in a pluginized manner within the “ training– inference 
collaboration” framework, it has been stably deployed, and comparative experiments verify its 
superiority over default FedAvg in aggregation performance. 

5. Conclusion and Outlook 

This paper proposes a “cloud–edge collaborative image recognition task offloading framework 
driven by federated learning for training–inference collaboration and resource optimization.” 
Targeting the problems of transmission latency, limited computing power, and sample imbalance in 
traditional paradigms, we conducted research and implementation along three dimensions: integrated 
training– inference, collaborative inference, and federated aggregation. Specifically, a task–
resource–data relationship model for cloud–edge collaboration was constructed, and a closed-loop 
workflow of training, image distribution, and edge inference was realized through containerization 
and declarative orchestration. A dual-trigger collaborative inference migration strategy based on load 
and confidence was designed to effectively balance latency and accuracy. Furthermore, a dynamic 
weighted aggregation method for imbalanced samples was proposed to enhance the contribution of 
high-quality local models in the global model. Experimental results show that the framework 
significantly reduces latency and improves recognition accuracy in both medical and marine image 
recognition scenarios. 

Looking ahead, several directions remain to be further explored. At the task offloading level, multi-
objective constraints such as energy consumption, cost, and security can be introduced. In 
collaborative inference, intelligent prediction and adaptive scheduling can be incorporated to better 
suit large-scale dynamic environments. In federated aggregation, personalized aggregation and model 
distillation can be explored to enhance convergence and generalization across heterogeneous nodes. 
In terms of engineering applications, mechanisms for cross-domain collaboration and privacy 
protection should be developed to meet real-world business requirements. Overall, the proposed 
framework provides a scalable pathway for efficient image recognition in cloud–edge environments 
and is expected to evolve into multimodal and cross-industry intelligent solutions with the 
advancement of infrastructure and algorithms. 
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