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Abstract: With the development of GIS-based geospatial information technology, new 

methods have been provided for landslide disaster research. However, there is currently no 

suitable way to combine GIS technology with machine algorithms. In order to construct a 

highly accurate landslide sensitivity spatial model, this paper statistically analyzes the 

relationship between landslide disasters and various influencing factors in the study area 

through the GIS spatial analysis function, especially for the actual situation along the 

Sichuan-Tibet Railway. In this paper, a cross-check method is used to construct a landslide 

sensitivity evaluation model, and the accuracy of different models is quantitatively 

evaluated. The results of the fitting accuracy of the logistic regression model and the 

support vector machine model are: the average accuracy in the modeling stage is 75.722 

and 75.65, and the average accuracy in the verification stage is 71.34 and 71.21. At the 

modeling stage, the SVM model has a fitting accuracy of about 3% higher than that of the 

logistic regression model; at the verification stage, the fitting accuracy is 0.13% higher 

than that of the logistic regression model; the AUC results show that the SVM model 

performs optimally, its AUC value is above 0.9, which achieves a higher accuracy. 

Compared with the logistic regression model, this value is 0.111 higher in the modeling 

stage and 0.111 higher in the verification stage. 

1. Introduction 

Landslides are one of the most widely distributed geological disasters in the world. They not 

only cause great damage to regional surface cover and ecological environment, but also seriously 

threaten people's lives and property safety. The large-scale exploitation of coal resources will also 

trigger a wide range of geological landslides disaster. Based on the analysis of the spatial 

distribution characteristics of geological hazards, research teams at home and abroad have rarely 

used numerical modeling and quantitative evaluation of landslide hazards using remote sensing and 
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geographic information system (GIS) methods. 

For the research and analysis of landslide sensitivity, many research teams at home and abroad 

have spent a lot of time and energy in this area. In [1], the author introduced the K-PSO clustering 

algorithm and entropy method, and established a landslide sensitivity analysis model. The analysis 

results based on the K-PSO clustering algorithm show that compared with in situ observations, the 

sensitivity of the proposed K-PSO method to landslides is an effective water quality analysis for the 

reservoir area of Xulong Hydropower Station. In [2], the author used drainage density to optimize 

the catchment area threshold, established a support vector machine sensitivity prediction model 

based on genetic algorithm, and carried out seismic landslide sensitivity zoning for Baosheng 

Township. The results show that the accuracy of the seismic landslide sensitivity analysis based on 

the optimized slope elements reaches 98.72%. In [3-4], the author considered the problem of 

landslide body formation, and considered the formation of stress-strain state (SSS) and the stability 

of soil structures (cuts and embankments). The calculation results can see the emergence and 

evolution of the "plastic" region, or the limit state of the "compressed" and "expanded" regions. In 

[5], the author used the receiver operating characteristic curve to evaluate the model quality, and 

also combined sensitivity research and uncertainty assessment to produce a reliable landslide 

sensitivity model that can be used for regional spatial planning. Intermediate complexity statistical 

methods are used to assess the relative landslide sensitivity on a regional scale [6]. In [7-8], the 

authors applied the PFR model to consider the influence of landslide-related factors related to 

high-resolution images of Google Earth and field observations. The results show that compared 

with the existing data and previous studies in the same area, the LiDAR-derived DEM using the 

PFR model improves the landslide sensitivity map with an accuracy performance of 92.59%. In 

addition, this study shows that all considerations have a relatively positive effect on the landslide 

sensitivity map in the study, however, the most effective factor for landslide occurrence is 13.7% 

lithology. In [9], the author puts forward an automatic workflow, from the hourly network-based 

rain gauge data collection to the generation of spatial difference rainfall prediction, and emphasizes 

the potential use of citizen scientific data to improve the research on landslide early warning system. 

In [10-12], the author proposed a new landslide inventory mapping framework based on the spatial 

characteristics of landslides. This is the first time that high-resolution remote sensing images are 

used to obtain the landslide spatial information of LIM by integrating multi-scale segmentation of 

post-event images with MV methods. In [13-14], the author provided a new method for studying the 

mechanism of earthquake-induced landslide formation, established a geological model and carried 

out simulation experiments. Model test results show that the effective shear strength of the rock 

mass can be reduced by 4.4% to 21.6% due to the action of void gas. 

Remote sensing is a tool that is important for the production of land use and land cover maps 

through a process called image classification [15]. In [16], the authors proposed an integration of a 

geographic information system (GIS) and a gene expression program (GEP) to predict 

rainfall-induced shallow landslides in Son La province, Vietnam. The predictive power of the model 

has been verified by the area under curve calculation. In [17], the author applied GIS technology to 

measure soil material content. Based on the soil nutrient database and GIS and GPS platforms, the 

authors studied the spatial distribution of soil nutrients in Sanmenxia, Henan. The results showed 

that the organic matter was lacking in the southwestern area of Sanmenxia, the available 

phosphorus was moderate, and the available nitrogen was low. In [18-19], the author applied GIS 

technology to analyze flood disaster index. The author used very high-resolution (VHR) satellite 

images and multi-criteria analysis (MCA) to make flood hazard maps. He chose the analytic 

hierarchy process to calculate the weight of each criterion in the flood hazard index (FHI). This 

work demonstrates the benefits of combining remote sensing data with MCA methods to provide 

rapid and cost-effective information on hazard assessments. Existing findings about the built 
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environment are more reliable than those about the food environment. The application of GIS data / 

methods in obesity research is still limited, and related research faces many challenges [20]. In [21], 

the author applied GIS technology to the analysis of flood disasters. The author developed a 

risk-based tool by transferring the Landscape Architecture Technical Information Series (LATIS) to 

an area with limited data resources, which uses input parameters to estimate the extent of damage. It 

was found that the map generated showed a spatial change in the cost of damage, which was related 

to the depth of the flood. In [22], the author describes four shell scripts that perform fast and 

automatic calculations of morphometric parameters and draw curves that show the changes in the 

parameters calculated during the entire channel development process. These scripts work on the 

basis of free and open source software from GRASS GIS and contain the basic characteristics of 

river channels. In [23], the author analyzed the local field values in the entire GIS geometry, and 

needed to use the full Maxwell method to simulate the VFT generation process. The authors give 

example simulations of VFT overvoltage (VFTO) waveforms for two geometries and compare the 

numerical work required to solve the related magnetic field equations. In [24], the author applied 

GIS technology to measure soil material content. The authors used remote sensing and GIS data to 

study land cover changes and CO2 stocks in Indonesia, and processed them with LUMENS 

software. The study successfully compared land conversions between 1989-2000 and 2000-2013. In 

[25-26], the authors used pairwise comparisons to assess the consistency ratio between expert 

opinions and calculate the final weights for each criterion. The article uses a weighted linear 

combination (WLC) method in a GIS environment to generate a wind turbine adaptability map. It 

was found that 45% of the study area is very suitable for wind turbines. In [27], the author applied 

GIS technology to the quantitative assessment of water resources vulnerability. In order to explore a 

better quantitative assessment method for water resources vulnerability, the authors used GIS and 

RS technology to evaluate the vulnerability of water resources system in Hengyang Basin. 

A large amount of literature on landslide disaster research has sprung up. However, in the study 

of statistical models of landslide sensitive areas, the following problems have not been reasonably 

resolved: 1) In terms of the regional scale of mines, there are few studies on the spatial distribution 

of geological hazards and their dependence on scale; 2) There are not many predictions of 

geological hazards under the influence of mining. At present, no quantitative evaluation of the 

impact of mining has been found in the prediction of spatial hazards. 

In order to build a spatial model of landslide sensitivity with high accuracy, this paper analyzes 

the relationship between landslide disaster and various influencing factors in the study area through 

the spatial analysis function of GIS, especially for the actual areas along the Sichuan Tibet railway, 

to explore the impact on landslide disaster. In this paper, the sensitivity evaluation model of 

landslide is constructed by using cross test method, and the accuracy of different models is 

evaluated quantitatively. The results of the fitting accuracy of the logistic regression model and the 

support vector machine model are: the average accuracy in the modeling stage is 75.722 and 75.65, 

and the average accuracy in the verification stage is 71.34 and 71.21. Compared with the logistic 

regression model, this value is 0.111 higher in the modeling stage and 0.111 higher in the 

verification stage. 

2. Method 

2.1. Landslide Sensitivity Evaluation Model for Sichuan-Tibet Railway 

(1) Logistic regression method (Logistic) 

Similar to linear regression, logistic regression also detects the quantitative relationship between 

a dependent variable and one or more independent variables through the idea of regression. The 

dependent variable value is transformed into the logarithm of probability ratio corresponding to its 
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value state, that is, the probability of dependent variable events is fitted by logistic curve. And the 

method of solution is changed from the original least square estimation to the maximum likelihood 

estimation. 

Let 1 2,  , ,  pX X X  represent a sampling value of p independent variables 1 2,  , ,  px x x , and Y 

is a binary variable with a value of 1 or 0. You can use the Logistic function to estimate this 

sampling Y. A probability of 1 where the relationship between the dependent and independent 

variables can be expressed as: 

1

1 z
p

e


                            
(1) 

In the formula, P is the probability of occurrence of dependent variable estimated according to 

each variable, and its value range is 0 to 1, which can be expressed as an S-shaped curve; Z value is 

the weighted linear combination of each variable, and its value range is - ∞ to + ∞, which can be 

expressed by the sum of a series of constant values. The formula is as follows: 
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In the formula, p / 1-p is the maximum likelihood; α is the intercept of the formula, which is also 

a constant value; xi is the independent variable, which is the predictor; βi is the coefficient of the 

independent variable in the polynomial. 

(2) Model impact factor 

In the logistic regression model, the factor score is used to determine whether the factor needs to 

enter the model. The calculation method is as follows. Suppose there are n variables, 1 2,  , . n   , 

and m variables that have not entered the model, 1 2,  , . mb b b . If bi is not a categorical variable, 

then the statistical score for bi is :  
1 2

2

2 ,i n iS L B . In the above, if bi is a categorical variable and 

there are k categories, then it will be transformed into a k-1 dimensional virtual vector, and these 

new k-1 variables are denoted as 1 2, ,i i i kb b b  % % . And the statistical score of the new variable 

becomes: 
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In the above formula, α is the design matrix of 1 2, , n   ; bi is the design matrix of 

1 2, ,i i i kb b b   . There are many calculation methods for the importance of model factors. The 

relative importance of this article is based on the degree to which the uncertainty in predicting the 

dependent variable can be reduced after using a certain factor. The prediction of the uncertainty of 

the predicted value is based on the entropy of its distribution. The calculation method of the relative 

importance of the three models is as follows: 
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In the formula, | jY xH  represents the entropy value of the conditional distribution probability 

| jy xf ; xj represents the amount of information about whether the conditional distribution probability 

| jy xf  of Y is greater than the distribution boundary fy. 

2.2. Automatic Extraction Model of Landslide Sensitivity based on Machine Learning 

(1) Recursive feature elimination method based on random forest (RF-RFE) 

In the objective function, the RFE uses DJ(i) and (ωi) 2 to evaluate the criteria that affect the 

removal of a feature in each iteration. When several features are removed in each iteration, this 

process becomes a problem of finding the optimal sub solution, which is also necessary to obtain a 

small feature subset. DJ (i) is the objective function of the OBD algorithm based on the sensitivity 

analysis feature evaluation. Using DJ (i) as the feature function and expanding by Taylor series, we 

can get: 
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Among them, the weight change value i iD   replaces the corresponding i feature, and the 

OBD algorithm advocates using DJ (i) as the weight size instead of the weight size based on the 

pruning standard. For the linear discriminant function, its cost function J is a binomial equation with 

ωi weights. It is a cost function 
2•
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 ‖ ‖  with mean square error classification. Its 

minimum cost function can be expressed as 
2(1/ 2)J w ‖‖  under linear SVM. Therefore, these 

two expressions provide a theoretical basis for using (ωi) 2 as a criterion for feature criteria. 
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Ai is the OOB accuracy of the i-th tree, efi is the difference between the OOB accuracy of the 

i-th feature f in the old and new decision trees, S is the variance of the OOB accuracy of the i-th 

feature f in the new and old decision trees, and ef feature f's influence on the OOB accuracy. 

(2) Committee voting selection method based on random forest (RF-QBC) 

There are two main methods for the QBC measurement committee's voting inconsistency. One is 

based on voting entropy (VE) strategy: 
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Among them, C is the number of models in the committee, and V (yi|X) is the number of votes 

labeled by the members of the committee as sample yi. The other is based on the relative entropy 

(RE) strategy: 



International Journal of Engineering Technology and Construction 

53 
 



   
 

 

 

 
   

*

1

1

1
arg max

|
| log

|

| 1
| |

|

c

c

c c

c

C

x

c

i

i

i axg i

c
ay i

avg i i

cayg i

X D P P
C

P y X
D P P P y X

P y X

P y X
P y X P y X

P y X C





 







   
 











l

l

‖

‖

                 

(9) 

Among them, θ (c) represents a model member of the committee, and Pavg represents the 

average of conditional probability of all committee members. 

The basic idea of RF-QBC based on random forest based committee voting selection algorithm 

proposed in this paper can be described as follows: first create a training set to establish a selection 

and replacement of the original data, and set up the created "bag" as a markable object. Then, use 

each training set to train a random forest classifier, train the class labels of all points in the 

candidate set, and iteratively calculate the voting entropy of each sample. The steps are as follows: 

1) The stratified random sampling method is used to extract the initial training set S from the 

original training sample set, and the remaining unsampled samples default to the unlabeled test 

sample X; 

2) The bootstrap randomly selects the training set S, and generates a subset  , 1,2, ,kS k k   

of training samples. Each time the unextracted samples form k out-of-bag data (OOB); 

3) Generate a single decision tree using each training sample kS as the training set. 

4) Repeat steps 2 and 3 until k decision trees are generated; 

5) Classify and predict the unlabeled test sample X, calculate the voting entropy H (xl) of the 

unlabeled test sample, and according to the QBC algorithm voting entropy sampling principle 

XQBC label the sample with the largest information entropy to the training sample set S: 
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H (xl) is an empirical measure of entropy, yl* is the prediction result of unlabeled sample 

 i ix x X  ,  * |i ip y m X  is the probability of predicting that unlabeled sample xl belongs to a 

certain category m, and Nl is the number of categories predicted by the committee to predict the 

category of unlabeled samples. 

2.3. GIS Model based on Support Vector Machine (SVM) and Kernel Function 

In general, SVM is designed to solve two types of classification problems, that is, there are both 

positive samples and negative samples. The goal of the two types of SVMs is to find a hyperplane 

on an n-dimensional space, to distinguish them at the maximum interval, and to make the separated 

two types of data points farthest from the classification plane. This hyperplane can be either a plane 

or a surface. Expressed mathematically: 

21
min

2
w‖ ‖

                            
(11) 

Where the constraints are:    1i iy w x b    

In the above formula, ||w|| is the norm of the hyperplane normal vector, b is a scalar, 

and · represents a scalar product. The Lagrange multiplier rule can be introduced to find the 

extreme value, and the auxiliary function is generated as follows: 
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In the above formula, λi is a Lagrangian multiplier. Set the partial derivatives of L for w and b 

equal to 0, and get: 
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And subject to: 
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0, 0
n

i i i

i

y 


  . The above discussion applies to the case of linear 

separability. For more general linear inseparable instances, the relaxation factor   1,  2,  ...,  i i n   

is introduced to adjust the constraint conditions, as follows: 

   1 , 0i i i iy w x b      
                       

(14) 

Here v∈ (0,1] is a new threshold for error classification. On the other hand, the kernel function 

K (xi, xj) is introduced into the nonlinear indivisible problem. The selection of kernel functions is 

very important for SVM model. Although some new kernel functions have been proposed, the four 

basic kernel functions that are widely recognized are: 

Linear kernel function (Linear):  , T

i j i jK x x x x  

Polynomial kernel function (Polynomial):    , , 0
d

T

i j i jK x x x x r     

Radial basis function:    
2

, i jx x

i jK x x e
 

  

Sigmoid function (Sigmoid):    , tanh T

i j i jK x x x x r   

Among them, γ, r, and d of the kernel function are parameters, which need to be optimized when 

building the model to improve the fitting accuracy of the model. 

3. Experiment 

3.1. Data Source 

The Sichuan-Tibet Railway engineering area spans multiple regional geological structural units, 

and the regional geological conditions are extremely complicated. In particular, the large-scale plate 

combination zone not only controls the dynamic characteristics of regional geological construction 

and development and evolution, but also greatly affects the regional engineering geological 

environment. This article selects the Sichuan-Tibet Railway crossing the Jinsha River combined 

zone (A), the Lancang River combined zone (B), the Nujiang combined zone (C), the Yarlung 

Zangbo combined zone (D), and the Sichuan-Yunnan block (I), Beiqiangtang-Qamdo-Simao block 

(Jiangda-Deqin tectonic magmatic belt (II1); Qamdo-Mangkang basin (II2), 

Nanchangtang-Zuogong-Baoshan block (III), Gangdise-Nianqing Tanggula land Block 

(Naqu-Luolong arc pre-basin (IV1); Gangdise-Chayu block magmatic arc (IV2), Baiyu-Linzhi 

section of the Himalayan orogen (V) as study areas, analysis of the Sichuan-Tibet railway 

cross-plate combination Engineering geological environment with sections. 

The in-situ stress testing projects collected by the original in-situ stress data collected in this 

paper mainly include: Erlangshan Tunnel, Galongsi Tunnel, Sangzhuling Tunnel, Rumei 

Hydropower Station Dagangshan Hydropower Station, Lianghekou Hydropower Station, etc. See 
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Table 1. 

According to Table 2, in the study area, the Jinshajiang fault is shown as a right-handed squeeze 

motion, the Lancangjiang fault is shown as a right-handed strike-slip motion, the Nujiang fault is 

shown as a right-handed strike-slip motion, and the Yarlung Zangbo River fault is characterized as a 

right-handed squeeze motion . 

Table 1. Statistics of in-situ stress measured along the Sichuan-Tibet Railway and adjacent areas 

Area code Buried depth Stress 1 Stress 2 

Area 1 215 12.55 5.66 

Area 2 27 13.14 8.04 

Area 3 286 19.45 11.06 

Area 4 255 19.88 4.23 

Area 5 268 16.43 8.94 

Area 6 195 15.22 10.57 

Area 7 166 20.16 5.07 

Area 8 191 29.92 9.77 

Area 9 160 16.44 8.39 

Area 10 194 17.08 1.94 

Area 11 210 19.34 6.99 

Area 12 15 9.99 9.20 

Area 13 18 16.44 1.50 

Area 14 401 13.09 8.96 

Area 15 99 16.45 2.66 

Table 2. Movement characteristics of major faults in the study area 

Fault 

name 
Position 

Parcel movement rate Fault shift rate 
Fault properties 

Towards Tendency Towards Tendency 

A 
Beidongpan 49.12 18.34 

3.61 3.05 
Right hand 

squeeze Nanxipan 44.26 20.13 

B 
Beidongpan 40.19 36.48 

2.83 1.77 
Right hand 

squeeze Nanxipan 39.99 38.81 

C 
Beidongpan 29.64 42.15 

2.43 0.21 Right hand slip 
Nanxipan 26.49 43.55 

D 
Beidongpan 30.11 40.16 

1.97 2.84 
Right hand 

squeeze Nanxipan 26.43 40.22 

3.2. Evaluation Factor Data 

The landslide sensitivity evaluation factor data sources used in this paper include DEM data 

(ASTER-GDEM) with a resolution of 30m, remote sensing image data, and other statistical data. 

DEM data and remote sensing images are downloaded from the Internet. Other statistical data 

include formation rocks. The sex maps (see Table 3) were scanned and digitized by paper maps. 

Based on the remote sensing image, with the support of ENVI remote sensing software, the land 

use distribution map and NDVI distribution map were obtained through interpretation; the elevation, 

slope, aspect, and curvature factors were extracted based on DEM; Factors such as distance from 

road, distance from river, distance from fault, etc. were extracted on the basis of each thematic map. 
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The software used in this article mainly includes ARCGIS map mapping and spatial analysis 

software, ENVI remote sensing image processing software, IBM SPSS Statistic 19 statistical 

analysis software, and IBM SPSS Modeler 18 data mining software trial version. 

Table 3. Evaluation basic data table 

Data item Data source Scale Data sources 

Height 

ASTER-GDEM 30m Download online 

Slope 

Aspect 

Plane curvature 

Section curvature 

Land use type NDVI 
Remote sensing 

image (TM) 
30m Download online 

Way 

Paper map 
1:50 

thousand 

Land and Resources 

Department 

Formation lithology 

River network 

Fault 

Mining disturbance 

Coal field boundary 

3.3. Space Coordinate System and Its Parameters 

1) Coordinate system and map projection 

For the study area, the mapping scale is also large due to the high resolution of remote sensing 

images. In such a large scale, if the two different geodetic coordinate systems are used, the same 

geographic feature will have significant displacement and deformation under the two geodetic 

coordinate systems. Therefore, it is necessary to uniformly specify which geodetic coordinate 

system is used. This study used the 1980 Xi'an coordinate system, and the map projection was a 

Gauss-Kruger projection (3 degree band or 6 degree band). 

2) Scale 

For research areas, the scale of the results is generally 1: 2000, 1: 5000, 1: 10000, a few are 1: 

500, 1: 25000, 1: 50000, 1: 250000, etc. Among them: 1: 500, 1: 1000, 1: 2000, 1: 5000, 1: 10000 

use Gaussian 3 degree band projection, 1: 25000, 1: 50000 use Gaussian 6 degree band projection 

(see Table 4 for details). 

Table 4. Scale code table 

Number Scale Scale code Number Scale Scale code 

1 1:1000000 A 11 1:500 K 

2 1:500000 B 12 1:200000 L 

3 1:250000 C 13 1:1500000 M 

4 1:100000 D 14 1:2500000 N 

5 1:50000 E 15 1:4000000 O 

6 1:25000 F 16 1:5000000 P 

7 1:10000 G 17 1:6000000 Q 

8 1:5000 H 18 1:8000000 R 

9 1:2000 I 19 1:10000000 S 

10 1:1000 J 20 
No scale or nothing to do 

with it 
T 
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3.4. Evaluation Criteria of Sensitivity Model 

(1) Accuracy evaluation parameters 

The most direct way to evaluate the effect of the model is to look at the fitting accuracy of the 

model. In addition to the fitting accuracy, this paper further calculates four parameters on the basis 

of the confusion matrix, namely sensitivity, specificity, positive predictive value and negative 

predictive value. The formula expression is as follows : 

  
TP TN TP TN

Accuray Sensitivity Specificity
TP TN FP FN TP FN TN FP


  

    
， ， (15) 

    
TP TN

Positive predictive value Negative predictive value
TP FP TN FN

 
 

， (16) 

In the formula, TP and TN represent the positive and negative values respectively, that is, the 

number of disaster points and non disaster points correctly assigned by the model; while FP and FN 

represent the positive and negative values respectively, that is, the number of disaster points and 

non disaster points wrongly assigned by the model. 

(2) ROC curve and AUC value 

Usually, the area under the curve (Area Under Curve, AUC) is used as a standard to measure the 

prediction accuracy of the model. The range of AUC value is 0.5~1, and the value is 0.5. It is 

completely valueless prediction. When the value reaches 1, it is a completely ideal prediction. The 

ROC is calculated as follows: 

1
TP FP

Sensitivity Specificity
TP FN FP TN

  
 

，
             

(17) 

(3) Landslide point density 

The landslide point density is the basic indicator for testing the results of sensitive zoning. The 

landslide point density (LDD) is calculated as follows: 

 100 /i i iLDD L Npix S 
                  

(18) 

Among them, ( {1,2,3,4,5})iL i  is the number of historical landslide points in the i-th sensitive 

area, and this value can be obtained from the landslide sensitivity zoning map and historical 

landslide point spatial distribution map;  iNpix S  is the area size of the i-th sensitive area. 

4. Results and Discussions 

4.1. Analysis of Optimization Results of Sensitivity Space Model 

In the landslide sensitivity evaluation along the Sichuan-Tibet Railway, the parameters that 

entered the logistic regression model were six factors: elevation, slope, NDVI, distance from the 

road, lithology, and land use type. Their significance levels were above 95%. In addition, the entry 

of factors between different cross-tests is also different. The five factors of elevation, slope, NDVI, 

distance from road, and lithology are in 5 cross-checks (k = 1, k = 2, k = 3, k = 4 and k = 5), they 

entered the logistic regression model, which reflected that the model entry factors under different 

cross-tests were mostly the same. 

Through cross-validation of the two models, the confusion matrices of the three models at the 

30m scale were obtained, and the Moses fitting accuracy was calculated based on this. The results 

are shown in Figure 1 and the results of each evaluation parameter, as shown in Figure 2. 
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Figure 1. Cross-check accuracy of landslide sensitivity models in areas along the Sichuan-Tibet 

Railway 

From the results in Figure 1, it can be seen that the average accuracy of the logistic regression 

model and the SVM cross-check is very small. The average accuracy of the modeling stage is 

75.722 and 75.65, and the average accuracy of the verification stage is 71.34 and 71.21. Among the 

two models, the highest fitting accuracy is the support vector machine, and the average accuracy 

during the modeling and verification phases is 75.722 and 71.34, respectively. However, comparing 

the modeling stage and the verification stage, it can be found that although the SVM model has a 

higher fitting accuracy than the other model, which is about 3% higher, during the verification stage, 

the fitting accuracy is not much higher than the other two models, which is only 0.13% higher. 

From this perspective, the accuracy levels of the two models are comparable. 

From the standard deviation values in Figure 1, it can be found that in the modeling stage, the 

stability of both models is better, and the standard deviation values are small, but in the model 

verification stage, the model stability is worse than the modeling. In summary, in the landslide 

sensitivity evaluation analysis along the Sichuan-Tibet Railway, the support vector machine is the 

best of the two models. To further evaluate the model's ability to simulate areas along the 

Sichuan-Tibet Railway, four evaluation indicators of sensitivity, specificity, positive predictive 

value, and negative predictive value were calculated based on the confusion matrix. The results are 

shown in Figure 2. 

The results in Figure 2 show that during the evaluation of the landslide sensitivity evaluation 

model along the Sichuan-Tibet Railway, the standard deviations of the four validation indicators, 

such as the sensitivity of the logistic regression model, are small during the modeling stage, and the 

indicators are much more stable. The standard deviation of the 5-fold cross-validation is basically 

below 2, so it can be seen that the logistic regression model should be stable in terms of models. 

The results in Figure 2 show that in the evaluation of the landslide sensitivity model along the 

Sichuan-Tibet Railway, the stability of the four indicators in the verification phase compared to the 

modeling phase has decreased. The standard deviation of the verification phase is also above 3. The 

comparison between different models found that for four indicators and five cross-standard 

deviations, the sensitivity is expressed as support vector machine> logistic regression model; the 

specificity is expressed as support vector machine> logistic regression model; the positive 

predictive value is expressed as support vector machine> logistic regression model; the negative 

predictive value is expressed as support vector machine> logistic regression model, indicating that 

the stability of the support vector machine on the four indicators has its own advantages. 
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From the average value of the four indicators, the sensitivity shows as support vector machine > 

logistic regression model; the specificity shows as support vector machine > logistic regression 

model; the positive predictive value shows as support vector machine > logistic regression model; 

the negative predictive value shows as support vector machine > logistic regression model, which 

shows that the support vector machine model is the best in the evaluation of areas along the Sichuan 

Tibet railway. 

 

(a) Cross-check of logistic regression model 

 

(b) SVM cross-check 

Figure 2. Cross-examination evaluation index of landslide sensitivity model along the 

Sichuan-Tibet Railway 

4.2. Accuracy Analysis of Sensitivity Spatial Model Fitting 

In this paper, the ROC curve of the two models is drawn by using the specific value of landslide 

disaster / non landslide disaster at various points in the modeling and verification stage and the 

predicted value of the model, and the corresponding AUC value is calculated based on the obtained 

curve. The results are shown in Figure 3. 
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Figure 3. AUC value of landslide sensitivity model along Sichuan Tibet Railway 

From the results in Figure 3, it can be seen that the AUC value of the two models is higher than 

0.5 and basically above 0.8 regardless of the modeling stage or the verification stage, which proves 

that the models are valid and can be used to evaluate the landslide sensitivity along the 

Sichuan-Tibet Railway. Comparing the two specific models, the support vector machine model 

performs optimally. Its AUC value is above 0.9, which achieves a higher accuracy. Compared with 

the logistic regression model, this value is 0.111 higher than the logistic regression model (logistic 

regression model); During the verification phase, it was 0.111 (logistic regression model) higher. 

From the perspective of the ROC curves and AUC values of the two models in the modeling and 

verification phases, it also shows that the support vector machine model is the optimal model. 

In order to further compare the models, the average value of the relative importance of different 

cross-validation is calculated, and the distribution map of the factor importance model is drawn. 

 

Figure 4. Importance of landslide sensitivity model factors in areas along the Sichuan-Tibet 

Railway 

From the analysis of the relative importance of different model factors, we can see that in the 
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evaluation of landslide sensitivity along the Sichuan-Tibet Railway, some factors are important to 

all models, including the two factors of lithology and distance from the road. Both models have 

higher scores, and their relative importance in the two models are: The relative importance of 

lithology is 0.2915 (logistic regression model) and 0.4288 (support vector machine); the relative 

importance of elevation is 0.2519 (logistic regression model) and 0.1022 (support vector machine); 

the relative importance of distance from road is 0.2108 (Logistic Regression Model) and 0.1771 

(Support Vector Machine); the relative importance of the slope is 0.1366 (Logistic Regression 

Model) and 0.0915 (Support Vector Machine). 

4.3. Analysis of Evaluation Results of Sensitivity Space Model 

The SVM model and RVM model obtained from the training are used to predict the sample data 

in the study area, and the landslide sensitivity index distribution in the study area is obtained. Based 

on the natural breakpoint method, the landslide sensitivity is divided into: VHS (HS), Moderate 

Sensitivity (MS), Low Sensitivity (LS), and Very Low Sensitivity (VLS). We use the landslide data 

to generate a landslide interval distribution map as shown in Figure 5. 

 

Figure 5. Distribution of landslide points in different sensitive areas of each model 

It can be seen from Figure 5 that the number of landslides in the two models of SVM_Gauss and 

MKSVM is very low in the HS region. In addition, the SVM_Poly model concentrates a large 

number of landslide points in the LS region. In the distribution of landslide points of the three SVM 

models, the landslide distribution trend of the MKSVM model gradually increased from VLS to 

VHS, which is closest to the actual landslide distribution rule. Although the distribution trends of 

SVM_Poly and SVM_Gauss are not as good as MKSVM, it is also difficult to indicate where is the 

gap, so the landslide point density needs to be used to further analyze the superiority of the RVM 

model. The landslide point density calculated in this paper is shown in Table 5. 

Table 5. Calculation results of landslide point density in each sensitive area 

Sensitive area 
Landslide point density 

SVM-Gauss SVM-Poly MKSVM 

VLS 0.51 0.67 0.47 

LS 0.99 1.64 0.87 

MS 1.78 2.05 1.80 

HS 2.05 3.46 2.03 

VHS 4.55 6.18 4.68 
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According to the analysis of three SVM models in Table 5, the density value of SVM﹣poly in 

VHS is the highest (6.18), but the value of VLS (0.67) is not the lowest. The value of MKSVM in 

VLS is the lowest (0.47), but it is not the highest in VHS, so it is difficult to describe the best model. 

Here, the sum of the two high sensitivity regions (VHS and HS) and the two low sensitivity regions 

(VLS and LS) is calculated respectively to get table 6. 

Table 6. Statistical results of the sum of density of landslide points 

Sensitive area 
Landslide point density (Pcs / 100 km2) 

SVM-Gauss SVM-Poly MKSVM 

Sum of VLS and LS 1.65 2.11 1.58 

Sum of HS and VHS 5.67 9.01 5.55 

It can be seen from table 6 that the effect of SVM model is generally good, and the prediction 

effect of MKSVM is closest to the real landslide distribution law. The sum of the two low 

sensitivity is only 1.58 /100 km2, and the sum of the two high sensitivity is 9.01 /100 km2. 

5. Conclusion 

Based on the spatial analysis function of GIS, this paper analyzes the relationship between the 

landslide disaster and the influencing factors in the study area. The basic factors to be selected for 

evaluation include topography, geology, hydrology, surface cover and human activities. In particular, 

in view of the actual situation of the areas along the Sichuan Tibet railway, the mining disturbance 

factor is introduced to explore the impact on landslide disaster. 

In this paper, a cross-check method is used to construct a landslide sensitivity evaluation model 

(logical regression model and support vector machine model), and the model is optimized, and the 

accuracy of different models is quantitatively evaluated. The results of the fitting accuracy of the 

logistic regression model and the support vector machine model are: the average accuracy in the 

modeling stage is 75.722 and 75.65, and the average accuracy in the verification stage is 71.34 and 

71.21. Through the above comparison, the support vector machine model is the optimal model for 

landslide sensitivity evaluation along the Sichuan-Tibet Railway. 

At the modeling stage, the SVM model has a fitting accuracy of about 3% higher than that of the 

logistic regression model; at the verification stage, the fitting accuracy is 0.13% higher than that of 

the logistic regression model; the AUC results show that the SVM model performs optimally, its 

AUC value is above 0.9, which achieves a higher accuracy. Compared with the logistic regression 

model, this value is 0.111 higher in the modeling stage and 0.111 higher in the verification stage. 
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