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Abstract: This research focuses on the balance between privacy protection and data 
practicality of high-dimensional location data in the mobile Internet and LBS scenarios. 
Traditional anonymization and perturbation methods suffer from precision loss, weak 
dynamic adaptability, and neglect of personalized user needs. Based on the rigor of 
differential privacy theory, two innovative solutions are proposed: firstly, the graph 
automatic encoding method integrates user social relationships and spatial behavior, and 
achieves joint protection of trajectory and topology through dynamic privacy budget 
allocation; Secondly, building personalized privacy configurations based on user 
preferences, allocating privacy budgets differentially through stopping point clustering and 
sensitivity scoring, and enhancing service accuracy while strengthening protection in 
sensitive areas. Experimental verification shows that both perform excellently in terms of 
privacy protection strength, data utility (improved by over 10%), and operational efficiency. 
Dynamic budget allocation and user preference modeling are key to balancing privacy and 
practicality. In the future, intelligent parameter adjustment, large-scale scene adaptation, 
and compliance verification will be explored. 

1. Introduction 

The research on high-dimensional business data publishing and analysis algorithm based on 
differential privacy[1] focuses on solving the problem of balancing privacy disclosure risk and data 
practicality faced by high-dimensional location data in the sharing process under the background of 
the rapid development of mobile Internet and location services (LBS)[2]. With the continuous 
expansion of the satellite navigation and location service industry, user location data is widely used 
in navigation, social, recommendation and other scenarios. However, traditional privacy protection 
technologies (such as data anonymization and perturbation methods) suffer from accuracy loss, 
insufficient dynamic adaptability, and neglect of users' personalized needs for privacy protection. 
Differential privacy, with its theoretical rigor and universality, has become the core mechanism for 
location privacy protection. However, existing research still has significant shortcomings in terms 
of feature encoding depth, dynamic response to user preferences, flexible regulation of privacy 
budgets, and user autonomy in decision-making. This study proposes two innovative directions: one 
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is to construct a graph automatic encoding method based on differential privacy, which integrates 
user social relationships and spatial behavior patterns through graph structure modeling, and 
introduces a dynamic privacy budget allocation mechanism in the embedding layer to achieve joint 
protection of trajectories and topology in location-based social networks (LBSNs); The second is to 
integrate user preference modeling, construct personalized privacy profiles through stopping point 
clustering and sensitivity scoring, design differentiated privacy budget allocation strategies, and 
improve service accuracy while ensuring privacy in highly sensitive areas. This method strikes a 
balance between privacy, availability, and robustness, providing theoretical support and technical 
path for the secure release and intelligent analysis of high-dimensional commercial data. 

2. Correlation theory 

2.1 Hybrid Design and Key Enhancement Mechanisms for Privacy Protection Architecture of 
LBS System  

In the privacy protection system based on location-based services, the independent architecture[3] 
achieves efficient communication and reduces centralized attack risks through direct interaction 
between mobile terminals and LBS servers, but relies on terminal hardware performance and LBS 
server security; The centralized architecture [4] introduces a third-party trusted anonymous server to 
perform identity anonymization and query obfuscation, reducing the computational burden on 
terminals, but facing the risk of single point overload and failure; Distributed architecture adopts 
P2P network to distribute processing tasks, improving system scalability and robustness, but 
terminals need to bear higher computing loads and are vulnerable to malicious node attacks. The 
hybrid architecture combines the advantages of centralization and decentralization, dynamically 
switching modes to adapt to system loads and security requirements - small-scale scenarios adopt 
centralized guarantee for efficient management, while high-risk or large-scale scenarios switch to 
distributed and decentralized loads. To enhance the depth of privacy protection, this architecture 
further integrates graph structure features to capture high-order associations between user social 
relationships and spatial behavior, avoiding social graph re identification attacks; At the same time, 
introducing stop point information to identify high-frequency user stay areas (such as residential 
and workplace), combined with user sensitivity ratings to achieve differentiated allocation of 
privacy budgets, while ensuring privacy in highly sensitive areas and improving service response 
quality, forming a collaborative protection mechanism of dynamic switching at the architecture 
layer and personalized regulation at the semantic layer. 

2.2 The core mechanism and theoretical characteristics of differential privacy model 

Differential privacy, as the core technology of modern data privacy protection, reduces the 
impact of individual data on output by introducing random noise into query results, achieving a 
balance between privacy protection and data practicality. Its core definitions include adjacent 
datasets (only differing by one data point), ε  - differential privacy[5] (limiting the output 
differences of adjacent datasets through probability ratios), and global sensitivity (quantifying the 
maximum impact of a single record on query results). In terms of implementation mechanism, 
Laplace mechanism is suitable for real value queries, and privacy requirements are met by adding 
Laplace noise with scale parameter b=Δ f/ε; The index mechanism is designed for discrete 
scenarios and constructs a probability distribution based on the sensitivity Δ u of the scoring 
function to select the optimal solution. In theory, differential privacy has composability (sequential 
combination of privacy budget accumulation, parallel combination taking the maximum value) and 
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post-processing immunity (any subsequent processing does not weaken privacy protection). These 
characteristics support its flexible application in multiple scenarios such as statistical queries, 
machine learning, recommendation systems, etc., providing a rigorous privacy protection 
framework for high-dimensional data publishing and analysis. 

3. Research method 

3.1 Location privacy protection technology system integrating automatic image encoding and 
differential privacy fusion 

In the context of LBS and social network integration, graph autoencoder technology models user 
social relationships and location activity trajectories through graph structure, combines graph 
autoencoder (GAE) to achieve low dimensional representation learning of nodes, and relies on 
differential privacy or noise injection (such as Gaussian and Laplacian noise) to protect individual 
privacy during encoding and decoding while maintaining data analysis capabilities. Location 
privacy protection technology covers multidimensional strategies: Gaussian noise (suitable for 
continuous value smoothing scenarios) and Laplacian noise (suitable for real-time requirements 
scenarios) are used for location data perturbation, balancing privacy protection and data accuracy by 
adjusting noise parameters; Data aggregation and anonymization techniques utilize weighted 
averaging, group aggregation, density aggregation, k-anonymity, spatial partitioning, location 
blurring, and other methods to reduce individual identifiability through group characteristics, 
making them suitable for scenarios such as heat map generation and traffic analysis; Differential 
privacy location queries use a dynamic privacy budget allocation strategy to adjust the privacy 
budget ( ε ) based on query frequency, sensitivity, data distribution, and service accuracy 
requirements, maximizing query accuracy while protecting privacy. This technology system 
achieves a collaborative balance between privacy protection and data availability through graph 
structure feature fusion, noise intensity optimization, and adaptive mechanism, providing theoretical 
support and technical path for privacy security and intelligent services in LBSN. 

3.2 Privacy Protection Mechanism of DP-GAE 

With the evolution of mobile Internet and location technology, location information has become 
a core application element in social networks, but the sensitive information contained in graph 
structure data, such as node identity, connection relationship and behavior trajectory, faces privacy 
risks such as re identification attacks and trajectory inference. Traditional anonymization methods 
are difficult to effectively hide user identities in graph structures, while deep learning models (such 
as graph neural networks) can capture complex structural relationships, but there is a "memory 
effect" that may lead to privacy breaches. To this end, this chapter proposes a location map 
automatic encoding method based on differential privacy (DP-GAE), which models user location 
and social relationships through graph structure, combines graph attention network (GAT) to 
achieve low dimensional representation learning of nodes, and satisfies differential privacy 
constraints (such as ε - privacy budget) through gradient pruning and Gaussian noise injection in 
the encoding stage to ensure that gradient updates do not leak sensitive information; In the decoding 
stage, privacy protection and data availability are balanced by reconstructing node features 
[6](minimizing feature two normal form loss) and graph structure (maximizing similarity between 
adjacent node representations). The model problem is defined as a graph G=(V, E, X), where nodes 
represent dwell points (including latitude and longitude, dwell time, environmental features, etc.), 
edges are connected based on geographic proximity or time series, and the target learns a low 
dimensional latent representation Z to preserve topological structure and node features. 
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Experimental verification shows that this method effectively maintains the accuracy and robustness 
of location data analysis while resisting threats such as re identification attacks and trajectory 
inference, providing theoretical support and technical path for privacy protection in high-
dimensional commercial data publishing. 

3.3 Design of DP-GAE Differential Privacy Graph Autoencoder Position Protection Model 

This study proposes the DP-GAE algorithm, which consists of three stages: location map 
structure construction, encoding, and decoding. In the construction of the location map structure, 
user dwell points S=(lat, lon, arr, dep) are extracted from dataset D, and dwell duration 
(duration=dep arr), daily period (period, identifying day/night), and environmental features (env, 
obtained by querying surrounding interest point types through OpenStreetMap Overpass API) are 
generated through feature engineering. Nodes represent dwell points, and edges are established 
based on geographic proximity (distance<500 meters) or user movement sequence (continuous 
positioning time interval<threshold), forming graph G=(V, E, X). In the encoding stage, Graph 
Attention Network (GAT) is used, and node i is represented at the l-th layer as 
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to meet differential privacy, L2 norm clipping is applied to the gradient g-t and Gaussian noise is 
added, where the noise variance is determined by the privacy budget ϵ. The decoding stage 
reconstructs node features through reconstruction 
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optimize the model, with a total loss function of 
Ltotal = λ1Lfeat + λ2Lgraph 

regulating the ratio of node features to graph structure loss through hyperparameters. This design 
maintains the accuracy and robustness of location data analysis while protecting user privacy. 

4. Results and discussion 

4.1 The impact of privacy budget on DP-GAE performance and multi model comparison 

This chapter validates DP-GAE performance on the Geolife and Gowalla datasets. The 
experiment adopts the GAT encoder decoder architecture and trains for 200 epochs (learning rate of 
0.01, Adam optimizer, 10 cross validations). The evaluation indicators include privacy leakage 
degree (quantified through gradient backpropagation attack), differential privacy noise level, node 
feature reconstruction error, graph structure reconstruction error, training time, and convergence 
speed. As shown in Table 1 

When ε=0.1, the privacy leakage risk is 3.2% but the reconstruction error is high (MSE=0.48). 
When ε=1.0, the optimal balance is achieved (leakage risk 9.5%, prediction accuracy 74.8%, 
graph structure preservation 85.6%). Comparison with baseline model (as shown in Table 2) 

DP-GAE outperforms GAP (10.7%/72.4%), k-anonymity (4.5%/65.3%), and PPKS 
(6.8%/68.7%) in terms of privacy breach risk (5.2%) and prediction accuracy (74.8%), approaching 
unprotected GATE (20.3%/78.2%) but possessing privacy protection capabilities. Training 
efficiency analysis shows that when ε is small, the training time increases (520s vs 430s) and the 
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convergence speed slows down (80 vs 50 rounds). The privacy utility trade-off curve [7] shows that 
the optimal balance between privacy and data availability is achieved when ε=1.0. Experimental 
verification of ablation: Removing the DP mechanism increased the risk of leakage to 19.8%, 
removing the GAT structure reduced the accuracy to 70.2%, and using only the MLP encoder 
resulted in an accuracy of 72.1%, both inferior to the complete DP-GAE (5.2%/74.8%). 

Title 1 Impact of Privacy Budget ε on Model Performance 

ε 
Value 

Privacy Leakage 
Risk (%) 

Node Structure Reconstruction 
Error (MSE) 

Graph Structure 
Retention (%) 

Prediction 
Accuracy (%) 

0.1 3.2 0.48 76.4 65.1 
0.5 5.8 0.41 81.2 70.3 
1.0 9.5 0.35 85.6 74.8 
5.0 15.2 0.42 89.3 72.4 
10.0 18.9 0.50 92.1 69.7 

Title 2 Performance Comparison of Different Models in Location Data Tasks 

Model 
Name 

Privacy Leakage Risk 
(%) 

Structure Retention 
(%) 

Prediction Accuracy 
(%) 

Reconstruction Error 
(MSE) 

GATE 20.3 92.5 78.2 0.28 
GAP 10.7 85.1 72.4 0.36 

k-
Anonymity 4.5 73.2 65.3 0.49 

PPKS 6.8 78.9 68.7 0.43 
DP-GAE 5.2 85.6 74.8 0.35 

4.2 Model experiment 

This study explores the emerging privacy protection needs brought about by the deep integration 
of spatial information technology and social services. The advancement of geographic information 
systems (GIS)[8], global positioning systems (GPS), and collaborative applications has significantly 
improved the accuracy and efficiency of geospatial data collection, promoted the development of 
location-based social networks (LBS), and achieved innovative functions such as geofencing social 
matching, spatiotemporal behavior sharing, and regional service recommendation. However, users 
face privacy and security challenges while enjoying precise location services; In a semi honest 
service architecture, attackers can use legitimate data interfaces for trajectory reconstruction attacks, 
thereby risking reverse parsing of user spatial behavior characteristics. The existing privacy 
protection paradigms, including l-diversity, k-anonymity, location ambiguity, and differential 
privacy, have limitations in both theory and practice: l-diversity focuses on discrete sensitive 
attributes, but ignores the risks of spatiotemporal behavioral dimensions; K-anonymity may dilute 
group characteristics, leading to identity re identification vulnerabilities in context aware attacks; 
Fuzzy positioning reduces positioning accuracy, but also lowers service matching efficiency; 
Although differential privacy is mathematically rigorous, it may lead to semantic distortion in small 
sample scenarios, and there is a need to improve the dynamic privacy budget allocation for 
personalized services. The current research gaps include: excessive emphasis on physical space 
protection in anonymization technology, lack of deep integration with user behavior modeling and 
context aware technology; There is a lack of dynamic balance model between personalized service 
maintenance and privacy protection intensity. To address these issues, an intelligent perception 
approach proposes a driven adaptive privacy protection paradigm that combines multidimensional 
user analysis and dynamic privacy parameter optimization to ensure sensitive spatial information is 
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protected while meeting the requirements of personalized location services and system response 
efficiency. This chapter introduces the User Preference and Differential Privacy Location Privacy 
Protection (UPDP-LPP) method, which has three key contributions: (1) a semantic based stopping 
point type detection clustering algorithm that uses data from a real POI dataset to determine the type 
of each stopping point; (2) Select candidate privacy aware location generalization algorithms based 
on the following factors, keep them within the radius threshold, allocate privacy budget for the 
radius, and inject Laplacian noise to protect location privacy; (3) Dynamic privacy budget 
allocation based on user privacy preferences to ensure the universal and effective use of reserved 
points. By combining behavioral semantic analysis with dynamic privacy regulation, this method 
strikes a balance between privacy protection and data utility and accuracy. The experiment on two 
real-world datasets validated its effectiveness in protecting user privacy while maintaining good 
data utility. 

4.3 Effect analysis 

This chapter evaluates the proposed User Preference and Differential Privacy Location Privacy 
Protection (UPDP-LPP) method through experimental analysis. The experimental environment is 
built on the PyCharm platform, using a social network dataset based on Geolife location and a point 
of interest (POI) dataset. The former contains 17621 movement trajectories of 182 users over three 
years, including attributes such as latitude, longitude, altitude, and timestamp. Data filtering is 
applied to focus on geographic ranges corresponding to city scale location services, ensuring 
consistency with typical application scenarios. The functional implementation includes three key 
algorithms: the stopping point extraction algorithm, which uses sliding window technology with 
time and distance thresholds (20 minutes and 200 meters) to identify meaningful positions; A 
semantic based stopping point type detection algorithm that integrates POI data through spatial 
clustering and weighted association to assign semantic labels (e.g. commercial services, spatial 
functions); And the UPDP-LPP algorithm itself, which dynamically allocates privacy budget based 
on user access frequency and injects Laplacian noise to summarize dwell points while maintaining 
type consistency. The performance comparison with three baseline methods (TLDP, DPLPA, 
LPPM) in terms of privacy protection level, data utility, and runtime indicators shows that UPDP-
LPP achieves excellent privacy protection (reaching the highest privacy level under different 
privacy budgets and access frequencies), enhances data utility (increasing by more than 10% 
through dynamic budget allocation and noise optimization), and reduces computational overhead 
(with the shortest runtime due to effective privacy parameter tuning). The experimental results have 
verified that this method effectively balances privacy protection with service quality and accuracy. 
Future research directions include improving user behavior modeling through deep reinforcement 
learning, developing collaborative frameworks for privacy budgeting and geographic parameter 
optimization, exploring heterogeneous integration of multi-source privacy protection technologies 
to enhance adaptability in complex scenarios. 

5. Conclusion 

With the development of mobile communication and intelligent sensing technology, location 
aware services have been deeply integrated into multimodal application scenarios, building an 
intelligent service ecosystem. However, the increasing risk of location privacy breaches and user 
privacy concerns have constrained the healthy development of location-based services (LBS). This 
study focuses on high-dimensional commercial data publishing and analysis scenarios, and proposes 
two core methods based on differential privacy: one is the location map autoencoder method, which 
models user location information and social relationships into a graph structure through a graph 
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autoencoder (GAE), uses differential privacy to add noise to the graph embedding layer to achieve 
privacy protection, and dynamically adjusts the privacy budget to balance data privacy and model 
performance; The second is a personalized privacy protection method that integrates user 
preferences[9]. Through a privacy budget allocation strategy[10], the noise injection intensity is 
adjusted based on the user's importance preference for location, achieving a personalized balance 
between privacy protection and data availability. Experimental verification shows that both methods 
have significant effects in reducing privacy risks, improving the accuracy of graph data analysis, 
and enhancing user experience. Future research will explore intelligent dynamic adjustment of 
privacy parameters to adapt to preference changes, optimize the integration efficiency of graph 
neural network structure and differential privacy mechanism, and verify scalability and robustness 
in large-scale datasets and complex network environments. At the same time, it will combine 
privacy protection laws and ethical frameworks to ensure technical compliance, providing 
theoretical support and practical paths for high-dimensional commercial data security release and 
intelligent analysis in fields such as smart cities and big data analysis. 
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