https://doi.org/10.38007/ML.2025.050107
ISSN 2790-0983 Vol. 5, Issue 1: 64-75

Scholar Publishing Group
Machine Learning Theory and Practice 0

Open Access Journals

Software Engineering Practice of Microservice
Architecture in Full Stack Development: From
Architecture Design to Performance Optimization

Yuxin Wu®>?*
!College of Engineering, Carnegie Mellon University, Moffett Field 94035, CA, United States
“Email:yuxinwu202507@163.com

*Corresponding author

Keywords: Single system, microservice architecture, multi feature fusion MicroRefactor .
distributed transaction

Abstract : With the rapid development of the Internet and the growth of business
requirements, the traditional single system is faced with dual challenges of maintenance
and expansion due to its huge code base and highly coupled modules. The existing
microservice migration methods rely on subjective judgment or single dimensional
analysis, which makes it difficult to fully capture system characteristics. This article
proposes a microservice reconstruction scheme based on multi feature fusion, integrating
source code and runtime data to construct an inter class dependency undirected weighted
graph model, extracting microservice modules through clustering analysis, and supporting
database splitting strategies and distributed transactions to ensure data consistency. The
core innovation includes a multi feature fusion mechanism that integrates semantic
similarity, code structure dependencies, and runtime interactions; Develop the microservice
extraction tool MicroRefactor, which significantly improves efficiency and accuracy
through a three-stage process; Provide database splitting and consistency assurance
solutions. Experimental verification shows that this scheme achieves efficient and accurate
module extraction in JPetStore system and medium-sized e-commerce system. After
reconstruction, the system functions are complete and performance optimization is
significant. The current research is limited by the need to improve code automation
processing capabilities and relies on manual design of test cases. In the future, we will
explore automated processing technology and test case generation methods to further
improve the refactoring plan.

1. Introduction

With the rapid development of the Internet and the growth of business requirements, the
traditional single system faces the dual challenges of maintenance and expansion due to its complex
and huge code base. Its highly coupled modules lead to any functional modification that may cause
a global impact, significantly reducing development efficiency and increasing deployment risk. To
address these challenges, microservice architecture has gradually become a mainstream solution. Its
core is to break down monolithic applications into a set of small, autonomous services[1-3], each
focusing on specific business functions, following the principle of high cohesion and low coupling,

Copyright: © 2025 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

64

Machine Learning Theory and Practice

supporting multilingual development and independent deployment, thereby enhancing the flexibility
and scalability of the system. However, the key to the migration of monolithic systems to
microservices lies in efficiently and accurately extracting microservice modules. Existing methods
have obvious limitations: Domain Driven Design (DDD) relies on the subjective judgment of
domain experts to construct domain models, which is highly subjective; Automatic or semi-
automatic extraction techniques are often based on single dimensional analysis of system
dependencies such as code analysis and log tracking, making it difficult to fully capture complex
characteristics such as code structure and runtime interactions (such as code analysis may ignore
runtime dependencies, and system load analysis may not cover the entire code path)[4-5], resulting
in a lack of comprehensiveness and objectivity in the extraction results. In response to this, this
article proposes a multi feature fusion based single system microservice reconstruction scheme. By
integrating system source code and runtime data, an undirected weighted graph model reflecting
inter class dependencies is constructed, and microservice modules are extracted using clustering
analysis techniques[6-7]; Simultaneously design a supporting database splitting strategy, utilize
distributed transactions to ensure data consistency, and implement engineering implementation
based on Spring Cloud and Spring Boot. The core contributions of the solution include: a multi
feature fusion mechanism that integrates semantic similarity, code structure dependencies, and
runtime interaction characteristics to comprehensively and objectively capture system features;
Develop MicroRefactor tool to improve extraction efficiency and accuracy through a three-stage
process of preprocessing, weighted average calculation of inter class correlation values, and
weighted undirected graph clustering[8-9]; Using the commonly used experimental system
JPetStore and medium-sized e-commerce system in software engineering as case studies to verify
their effectiveness, the reconstructed system has complete functionality and significantly improved
performance; Provide database splitting strategies and data consistency assurance solutions to
reduce the difficulty of refactoring implementation[10-11].

2. Correlation Theory
2.1. Monolithic vs. Microservice: Comparative Analysis and Scenario-Based Trade-off

In the field of software engineering, monolithic architecture and microservice architecture are
two core application design patterns, each with distinct characteristics and applicable scenarios.The
monolithic architecture (as shown in Figure 1) treats the entire application as a single entity,
integrating all functional modules internally, typically deployed on a web server in the form of a
web application archive (WAR) file, and distributing traffic through a load balancing server[12-13].

Its advantages lie in its easy implementation and maintenance, especially suitable for small
projects with low initial development costs and short iteration cycles. However, as the project scale
expands and business complexity increases, the limitations of monolithic architecture gradually
become apparent: the high coupling of modules leads to a decrease in code maintainability and an
increase in update difficulty; The scalability of the system is limited, and when dealing with high
concurrency scenarios, it can only be addressed by increasing server resources, which is costly and
has limited effectiveness, ultimately affecting the system's response speed and stability.

The microservice architecture (as shown in Figure 2) adopts a distributed and modular design,
decomposing complex systems into multiple small, autonomous service units, each running
independently within a process and interacting through lightweight communication mechanisms
such as RESTful APIs and message queues.

Compared to monolithic architecture, its core advantages are reflected in: 1) Scalability: Service
units can independently and horizontally expand, enabling on-demand resource allocation and
improving system performance; 2) Flexibility: The loose coupling feature supports independent

65

Machine Learning Theory and Practice

development, deployment, and upgrade of services, reducing the impact on other services or
systems; 3) Maintainability: Code modularization facilitates understanding, modification, and unit
testing, improving manageability; 4) Technical diversity: Different services can choose the most
suitable technology stack and programming language based on functional requirements, enhancing
the flexibility of system construction and maintenance[14-15].

module 1 | module 2
module 3 module 1
Browser 1
L module5 |
—— | WARI T
L —— |
Web Server 1 .
—LL o
Browser 2 o
Load balancing server module 1 module 2
database server
module 3 module 1
R I E— module5 \
Browser 3
WARN

Web Server n

Figure 1. Web Application Architecture of Multi Server Centralized Database with Load Balancing

T LT T T T T~ T T T T T T T T T T T T T T T ~ S
I{ Service Configuration and | [|))
| Governance | I | Debt balance ‘ | Link Tracking
| : : : and Monitoring
|] [I |
| Service | = | |
I - N
| Configuration : : . Service Gateway n :(:——‘_' Link Tracking
I | I |
I | I |
I . | I |
| | service governance I]
| : & | Microser Microser :
I | I vices 1 vices n 14 Service
N — | | Monitoring
| | I
| D | el
| |
| I
| |
| |

Figure 2. Microservices Architecture Diagram

2.2. Collaborative application of Microservices using Spring Boot, Spring Cloud, and Maven
POM

Spring Boot, as an open-source Java development framework based on the Spring framework,
aims to optimize application lifecycle management (startup, development, configuration,
deployment, running, monitoring). It significantly reduces code volume through annotation driven
development, integrates traditional XML/Properties configuration into a concise YML format, and
improves configuration management efficiency; Built in Tomcat/Jetty/Undertow servers, supporting
a lightweight runtime mode that does not require WAR package deployment, simplifying the
deployment process; Integrating the Actor package to implement application monitoring

66

Machine Learning Theory and Practice

functionality and simplify package management dependency configuration has become the
preferred tool for developing individual microservices in microservice architecture[16-18].

Spring Cloud is built on Spring Boot and is a key framework for microservice architecture
governance. By integrating components such as Eureka (service registration and discovery), Zuul
(API gateway), Hystrix (fuse), etc., it provides service governance tools required for distributed
systems (such as load balancing and configuration management) and supports efficient deployment
of cloud native applications on Docker/PaaS platforms. It is deeply bound with Spring Boot and
relies on the latter to achieve rapid development and independent deployment of service instances,
jointly forming the technical stack of Java microservice development [19-20].

The Maven Project Object Model (POM), as a Java build automation tool, standardizes project
build, reporting, and document management processes with POM as the core. It achieves automated
build through lifecycle management and plugin mechanisms, following the principle of "convention
over configuration" to reduce configuration complexity. At the same time, it extends functionality
through a rich plugin ecosystem (compatible with Spring Boot, JUnit, Git, etc.), reducing
developers' investment in building tool configuration and making it more focused on business logic
development.

The synergistic effect of the three: Spring Boot simplifies microservice unit development, Spring
Cloud provides distributed governance capabilities, Maven POM unifies construction and
dependency management, jointly building an efficient and scalable Java microservice development
system. In terms of limitations, Spring Cloud strictly relies on Spring Boot and cannot be used
independently; Maven's principle of 'agreement over configuration' may limit flexibility in complex
project scenarios.

3. Research Method

3.1. Research on Microservice Refactoring Scheme for Single System Based on Multi Feature
Fusion

The current research on microservice refactoring faces two core challenges: Domain Driven
Design (DDD) relies on subjective judgments of domain experts, which can lead to excessive
abstraction of business concepts and affect the accuracy of microservice partitioning; Although
automated microservice identification technology reduces subjective dependencies, it often focuses
on a single dimension (such as code structure or runtime interaction), making it difficult to fully
capture system features, resulting in poor performance or weak adaptability of the architecture after
refactoring. Some tools, such as ServiceButton, require a complete product in the software design
phase and have high method complexity, which limits their applicability in monolithic system
refactoring. In response to the above issues, this article proposes a single system microservice
reconstruction scheme based on multi feature fusion, as shown in its overall architecture. The
solution constructs a comprehensive system feature model through multidimensional analysis of
individual systems, reduces subjectivity, and can be operated with only source code, making it more
applicable. The refactoring process is divided into five stages: first, parse the source code of the
monolithic system, construct a set of classes (abstracting each class as a vertex of the graph), and
formally represent the class relationship graph through the triplet G=(C, R, W) (Figure 3).

67

Machine Learning Theory and Practice

Analyzc Read the source code ofthe 11_1d1v idual system

. L and perform feature analysis to construct

individual A collection representing classes. treating
systems

each class as a relation graph

A vertex ofl

Determine the three ty pes ofassociations

between classes: language in class

Determination documents
of Association
Relationship

Semantic similarity. structural similarity of
class A ST, and function calling
frequency

These steps involve source code analysis to
build a set ofclasses. where each class is
abstracted as a graph vertex for refact oriﬂg

h 4 o B .
personnel Association determination

. requires multidimensional analysis: semantic
Dlagram similarity ofclass documents (reflecting
. functional relevance). AST structural
representatlon similarity (indicating code organization).
and method call frequency (revealing runtime
interactions). These relationships are
formalized as a triplet G=(C. R. W). where C
is the set ofclass nodes. R is the set ofedges.
and W is the weighted average correlation

value ofsemantics, A ST. and call frequency

Figure 3. Class Relationship Diagram Construction Process

among them, C is the set of class nodes, R is the set of inter class relationships, and W is the
comprehensive correlation value (calculated by weighting semantic similarity, AST structure
similarity, and function call frequency). Next, perform multi feature correlation value calculation,
integrating semantic similarity (measuring the tightness of business logic), AST structure similarity
(reflecting code structure correlation), and function call frequency (revealing runtime interaction
activity) to obtain a comprehensive correlation value through weighted averaging. The higher the
comprehensive correlation value, the closer the inter class relationship, and the more it should be
classified into the same microservice. Then, the Chinese Whisper algorithm is used to perform
clustering analysis on the class relationship graph, with the input being a triplet G=(C, R, W).
Through iterative optimization of clustering labels, a microservice extraction scheme (clustering
distribution of class nodes) is output to improve cohesion and reduce coupling. Then enter the
database splitting stage, splitting the tables corresponding to entity classes in the original monolithic
database into different microservices; Release foreign key constraints or table connection operations
across microservices and retrieve data through API calls; For non entity class tables (such as log
tables), build a "non entity class table access microservice" to achieve interaction; Introduce
distributed transactions to ensure data consistency. Finally, a microservice governance architecture
is built based on Spring Cloud (integrating Eureka service registration, Zuul gateway, Hystrix fuses,
and other components). The extracted class code is encapsulated using Spring Boot, and service
calls are implemented through Feign. Hystrix handles call exceptions.

3.2. Multi feature fusion class relationship modeling and microservice reconstruction method

This section proposes a multi feature fusion method for calculating the comprehensive
correlation value of class relationships, which is used to construct the class relationship graph

68

Machine Learning Theory and Practice

required for microservice reconstruction. This method integrates three types of association features:
semantic similarity of class documents, structural similarity of abstract syntax tree (AST), and
dynamic interaction frequency during system runtime, and uses a weighted average strategy to
generate comprehensive inter class association values. In microservice refactoring, class documents
serve as the core carrier of functional logic, and their semantic similarity directly reflects the
functional correlation between classes. This study uses the BERT model to calculate the deep
semantic similarity between class documents. The specific process is as follows: first, unify the
encoding format of class documents to UTF-8, extract core elements such as class name, method
name, variable name, etc., and generate feature files in the form of "class name. info"; Then use the
BERT tokenizer to perform fine-grained segmentation on the feature file, taking the hidden state of
the last layer of the model as the class document vector representation; Finally, the cosine similarity
is used to measure the degree of semantic correlation between vectors, and the calculation formula
is

classVector;-classVector;

(1)

the range of values is [0,1], with larger values indicating tighter semantic associations. The
similarity of class AST structure reflects the cohesion of code. High similarity classes usually have
inheritance or interface implementation relationships. This study proposes an AST similarity
algorithm based on Levenshtein distance. The steps are as follows: convert the class AST into a
string representation and initialize the (m+1) X (n+1) dimensional group D (m, n is the string
length), fill in an increasing sequence from 0 to m/n, and calculate the minimum editing distance
through dynamic programming

D[i][j] = min(D[i — 1][j] + 1,D[i][j — 1] + 1,D[i — 1][j — 1] + cost) (1)

Rcsemantic (Ci' CJ) = |

classV ector;||x||classV ector||

(where cost is the character matching judgment value, 0 for the same and 1 for different), and
finally normalized to obtain similarity.The algorithm flow is shown in Figure 4.

The frequency of inter class interactions during system runtime reflects the strength of functional
coupling. In this study, a self-developed AOP link tracing tool was used to record the function call
behavior under test case coverage

This indicator is implemented through non-invasive AOP technology, accurately reflecting the
degree of correlation between classes during actual runtime. To balance the three types of
correlation features, the weighted average method is used to generate the comprehensive correlation
value, and the calculation formula is

W= Wl X R + WZ X RCAST + WZ X RCfunctionCall (1)

Csemantic

Among them, the weight coefficients meet the requirements. Table 1 provides three preset
weight schemes (semantic similarity priority: 0.5, 0.25, 0.25; structural similarity priority: 0.25, 0.5,
0.25; dynamic interaction priority: 0.25, 0.25, 0.5), which support flexible configuration according
to reconstruction needs.

69

Machine Learning Theory and Practice

Import ast_iand ast j and
convert them to their
corresponding characters
The string represents stru_i
and stru_j

I

Initialize two-dimensional array D [mr+1] [n+1]. mand n

re
For the lengths of str_i
ow

A sequence of integers from 0 to mand 0to n, initialize i,

)
I'he value is 1

similarity = 1 - (D[m][n] /

deny» max(n, 1))

deny
=il

Return similarity

correct

correet

il

whether str_ifi-1] i

ste_jl-1]

-

‘ cost =0 |
S— ; -

|>\illi\=minlUIJ—IIU*1..||’\illifll+l-
Figure 4. AST Similarity Calculation Process Diagram Between Classes

Dfi-1][j-1] + cost)

Table 1. Weight Allocation Table for Multi-Feature Fusion

Focus Wi (Semantic) W2 (AST) Ws (Interaction)
Semantic Priority 0.5 0.25 0.25
Structural Priority 0.25 0.5 0.25
Dynamic Priority 0.25 0.25 0.5

3.3. Mechanism Microservice extraction and database splitting methods

After completing the comprehensive correlation value calculation of class relationships,
microservice extraction can be achieved through unsupervised graph clustering. This article adopts
the Chinese Whisper algorithm, which classifies nodes with similar association relationships into
the same cluster through label propagation, automatically determines the number of clusters, and is
suitable for processing large-scale sparse graph data and robust to noise. The specific process is as
follows: import a class relationship graph G containing n nodes (node numbers 0 to n-1, initial
labels are numbers), set the number of iterations and association threshold; In each iteration, the
edge weights of all categories of neighboring nodes are accumulated for each node, and the
category with the highest weight is selected (if there are multiple maximum values, the smallest
number is selected). If the weight of the category exceeds the threshold, the node is classified into
this category. Otherwise, the original category is maintained; Repeat until the preset number of

70

Machine Learning Theory and Practice

iterations is reached, and the final label of the output node completes clustering. Threshold selection
needs to balance stability and flexibility, usually initialized to 0.1 or 0.3 and adjusted according to
data.Database splitting should follow the principle of single responsibility, with each microservice
corresponding to an independent database. According to whether the data table has corresponding
entity classes, the splitting strategy can be divided into two categories: for tables with entity classes,
they are assigned to the corresponding microservice database, the database foreign key constraints
are lifted, and the foreign key related operations are encapsulated as APIs through the ORM
framework. Cross table logic is processed at the application layer (such as after splitting the order
and customer tables, the order service calls the customer service through the API to verify the
customer ID); For tables without entity classes (such as region tables), entity classes are generated
through ORM reverse engineering, and a data access layer (DAO), business logic layer (Service),
and control layer (Controller) are built, encapsulated as independent microservices (such as "table
access services without entity classes"), providing CRUD interfaces for other services to call,
avoiding the complexity caused by database triggers or middleware.Distributed transactions are the
core of ensuring data consistency after database splitting. Comparing two-stage commit (2PC),
three-stage commit (3PC), and transaction compensation mode (TCC), this article chooses the TCC
scheme because it has a small impact on system performance and can ensure final consistency,
despite complex business logic and increased reconstruction costs. TCC is divided into three stages:
Try stage to reserve resources, Confirm stage to confirm operations and use reserved resources,
Cancel stage to cancel operations and release resources. During implementation, it is necessary to
handle exceptions such as null rollback (Confirm/Cancel not executed), idempotency (repeated
operations have no impact), and hanging (Cancel not executed after Try failure), and ensure
consistency by recording transaction status and checking transaction IDs.The Spring Cloud
framework is chosen for microservice implementation, and its mature ecosystem, flexible
component selection, and extensive community support are key advantages. The architecture design
includes core components: Eureka is responsible for service registration and discovery, Zuul serves
as a gateway to receive HTTP requests and implement load balancing distribution through Ribbon,
Feign or RestTemplate is used for inter service communication, Spring Boot Admin integrates
Eureka information to monitor service running status, Hystrix fuses provide fault tolerance
mechanisms to avoid microservice avalanche effects.Microservice encapsulation relies on the
Spring Boot framework, and the process includes: creating a Spring Boot project and defining
service interfaces and implementation classes, using Spring annotations to mark externally callable
service methods, configuring basic information such as service names and ports in the configuration
file, and finally registering the service to the Eureka service center through the startup class. In
terms of service invocation, Feign simplifies the invocation side encoding through declarative
interfaces, while RestTemplate requires manual construction of HTTP requests, making it more
suitable for complex business logic. In response to Feign call exceptions, combined with Hystrix's
processing flow, the following steps are taken: defining Feign client interface to declare service
endpoints and methods, writing a service downgrade handling class to trigger downgrade logic
when the call fails, enabling Feign and Hystrix support in the configuration file, and finally
implementing service calls and exception handling by injecting Feign client.

4. Results and Discussion

4.1. Design and experimental verification of MicroRefactor microservice automatic extraction
tool

MicroRefactor is a single system microservice automatic extraction tool based on multi feature
fusion. Its core functions are divided into three modules: reconstruction preprocessing, multi feature

71

Machine Learning Theory and Practice

fusion analysis, and class relationship graph generation and clustering analysis. Refactoring the
preprocessing module to verify the integrity of the source code package through
SourceCodePreprocessor, unify the encoding to UTF-8, and repackage it; SemanticSimilarity
Preprocessor extracts representation information such as class names, method names, and variable
names and saves them to a local file; ASTSimilarityPreprocessor converts source code into a Class
class file, builds an Abstract Syntax Tree (AST), and persistently stores it. The multi feature fusion
analysis module integrates three types of correlation indicators: BertSemanticSimilarity Analyzer
calculates the semantic similarity of class documents, ASTSimilarityAnalyzer quantifies the
structural differences of AST using Levenshtein distance algorithm, DynamiclnteractionFrequency
Analyzer calculates the inter class interaction frequency based on AOP link tracking tool, and
finally generates a comprehensive correlation value by weighted fusion of the three types of
indicators through MultiFeature Fusion Analyzer. The class relation graph generation and clustering
analysis module utilizes GraphGenerator to construct undirected weighted graphs, uses Chinese
Whisper algorithm for label propagation clustering, outputs microservice extraction schemes, and
supports result export.The tool implementation adopts mixed programming of Java and Python,
with Java encapsulating core functions and Python calling Java methods through PyJNIus. The
development environment includes JDK 8u202, IntelliJ IDEA 2022.1, Python 3.5.10, and PyCharm
2022.1. The tool interface is based on the B/S architecture. The left navigation bar includes
functions such as refactoring preprocessing, microservice extraction, and system help. The right
side displays the extraction results and supports export.The experimental verification takes the
classic monomer system JPetStore as the object, and uses cohesion (COH) and coupling (COP) as
evaluation indicators. By setting weight parameters (semantic similarity weight of 0.5, AST
similarity of 0.25, interaction frequency of 0.25), the comprehensive inter class correlation value is
calculated and a relationship graph is constructed. The Chinese Whisper algorithm (threshold of 0.1)
is used for clustering. The experimental results show that the microservice scheme extracted by
MicroRefactor has higher consistency on the SC1 and SC2 microservice components compared to
the method in reference [51], and is basically consistent on SC3; The cohesion (COH) increased
from 2.29 to 2.59, and the coupling (COP) decreased from 2.56 to 2.50, verifying the effectiveness
of the tool in improving cohesion and reducing coupling.

4.2. Model experiment

After completing microservice extraction and database splitting, it is necessary to name and
structurally encapsulate the extracted microservices. Based on the extracted class clusters, the class
clusters related to product information and search functions (such as Product and SearchResult
related classes) are named as product microservices, the class clusters related to user registration
and login are named as user microservices, the class clusters related to shopping cart operations are
named as shopping cart microservices, and the class clusters related to order creation and payment
are named as order microservices. At the same time, independent "entity free class access"
microservices are encapsulated for data tables (such as regional dictionary tables) corresponding to
entity free classes. Each microservice adopts a layered architecture: the control layer (such as
UserController, productController) processes HTTP requests, the business logic layer (such as
UserServicelmpl, productServicelmpl) implements core functions, the data access layer (such as
UserMapper, productMapper) encapsulates database operations, entity classes (such as User,
Product) define data structures, and are equipped with startup classes (such as
UserServiceApplication) for microservice instantiation.During the deployment phase, a
microservice architecture is built based on the Spring Cloud framework, integrating Eureka as the
service registry, Zuul as the gateway to handle request routing, Ribbon for client load balancing,

72

Machine Learning Theory and Practice

Hystrix for circuit breaker downgrade mechanism, and Spring Boot Admin for service monitoring.
The specific deployment process includes: creating an independent microservice module and
managing dependencies through Maven, configuring Eureka Server and Client to achieve service
registration and discovery, enabling Zul gateway to define routing rules, integrating Ribbon and
Feign to simplify service calls, configuring Hystrix to prevent avalanche effects, and integrating
Eureka through Spring Boot Admin to achieve service status monitoring. After the user request is
initially processed by the Zuul gateway, the target service instance is discovered through Eureka
and forwarded to the specific microservice through Ribbon load balancing. After processing is
completed, the result is returned to the gateway and the client responds, forming a complete request
processing chain.

4.3. Effect Analysis

This article proposes a microservice reconstruction scheme for monolithic systems based on
multi feature fusion. The core steps include feature fusion, database splitting, distributed transaction
design, and tool implementation and verification.The solution first integrates three types of features:
semantic similarity of class documents, structural similarity of abstract syntax tree (AST), and
frequency of runtime interaction. It generates inter class association values through weighted
averaging and uses unsupervised graph clustering algorithm (Chinese Whisper) to extract
microservices. During the iteration process, nodes are reclassified based on the weights of adjacent
nodes, and a threshold (usually 0.1-0.3) is set to balance stability and flexibility.Database splitting
follows the principle of single responsibility, with entity class corresponding tables assigned to
microservice databases, foreign key constraints removed, and foreign key operations encapsulated
as APIs through ORM. Entity class tables (such as region tables) are generated in reverse through
ORM to build DAO/Service/Controller layers, encapsulated as independent microservices (such as
"entity class table access services"), avoiding trigger/middleware complexity.The distributed
transaction adopts the TCC (Try Confirm Cancel) mode to ensure consistency: resources are
reserved in the Try stage (such as order service creation records and reserved inventory of goods
and services), confirmed and consumed in the Confirm stage, and resources are released in the
Cancel stage (such as rolling back inventory when an order is cancelled). Need to handle empty
rollback, idempotency, and hanging transactions, ensuring consistency through state records and
transaction ID verification.In terms of tools, we will develop a mixed programming tool
MicroRefactor (Java core+Python call), which supports pre-processing, extraction, and result export
in the B/S architecture interface. The experiment used JPetStore as the object, with semantic
weights of 0.5, AST and dynamic features of 0.25 each, and a threshold of 0.1. After clustering, the
cohesion (2.59) was higher than the comparison method (2.29), and the coupling degree (2.50) was
lower. After the actual e-commerce system reconstruction, the cohesion increased by 30% (1.87 —
2.43), the coupling degree decreased by 15% (3.12 — 2.65), and four microservices including user
management and product search were successfully extracted.The current tool requires manual
setting of feature weights and relies on a full set of test cases for link tracking (which takes about 2
hours in the middle system). Automation functions (such as interface document generation) need to
be improved. The future plan is to introduce machine learning automatic parameter tuning, combine
fuzzy testing to generate high coverage test cases, and enhance link tracing overhead through
bytecode to expand cross language support.

5. Conclusion

Microservice architecture, with its advantages of modularity, scalability, and technology

73

Machine Learning Theory and Practice

independence, provides a new path for extending the lifecycle of individual systems and improving
efficiency, but specific transformation plans are relatively scarce. Therefore, this article proposes a
single system reconstruction scheme based on multi feature fusion, covering five core contents:
problem modeling, multi feature correlation value calculation, microservice extraction, database
splitting, and reconstruction implementation. Research has shown that existing domain driven
modeling has strong subjectivity, while automatic or semi-automatic methods often approach from
a single dimension. Therefore, this approach enhances the scientificity of reconstruction through
multi feature fusion. Based on this solution, a microservice extraction tool MicroRefactor was
developed, which significantly improved the efficiency of microservice extraction for individual
systems. The tool adopts a three-stage process: first, preprocessing is performed, then three types of
inter class correlation values are calculated and weighted averaged, and finally a weighted
undirected graph is constructed for clustering to extract microservices. The effectiveness of the tool
was verified through the commonly used experimental system JPetStore in the field of software
engineering. Furthermore, taking a medium-sized e-commerce system as a practical object, the
application of the tool in actual projects was demonstrated. The refactoring process covered
automatic extraction, database splitting, distributed transaction ensuring data consistency, and
microservice deployment based on Spring Cloud. Tests showed that the system functionality was
correct, complete, and the performance was significantly improved after refactoring. However,
there are still two shortcomings in current research: firstly, MicroRefactor needs to improve its
automated code processing function after extraction; Secondly, tools rely on manually designed
comprehensive functional test cases, which are costly and prone to omission for complex large-
scale systems. In the future, we will explore code automation processing technology and automated
functional test case generation methods.

References

[1] Jordanov J , Petrov P, Kuyumdzhiev I ,et al. Domain-Driven Design in Cloud Computing:.
NET and Azure Case Analysis[J].TEM Journal, 2025, 14(1).DOI:10.18421/TEM141-05.

[2] Dobrinin M V .Extending RESTful web service resources in a JAVA-component-driven-
architectureapplication:US18424015;US202400018424015;US2024184240154,;US202418424
015[P].US12238159B2;US2025012238159B2;US12238159B2,;US12238159[2025-08-13].

[3] Tang S , Chen J , Wang D ,et al MVDiffusion++: A Dense High-Resolution Multi-view
Diffusion Model forSingle orSparse-View 3D Object Reconstruction[CJ]//European Conference
on Computer Vision.Springer, Cham, 2025.DOI:10.1007/978-3-031-72640-8 10.

[4] Jadcherla S, Burnam M H .PHYSIOLOGICAL SENSING DEVICE HAVING DATA ACCESS
LAYER, AND METHODS OF OPERATION OF
SAME:USUS2024/041912,;US202400000041912;US2024041912W;W0O2024US41912[P].WO2
025/035147A42; W0O202500003514742; W0O2025035147A42; W02025035147[2025-08-13].

[5] Dai Z, Wang S, Lu Q ,et al. Nonlinear hysteresis system control based on sliding mode neural
network and observer[J].Transactions of the Institute of Measurement & Control, 2025,
47(10).DOI:10.1177/01423312241279496.

[6] Zhu P. Construction and Experimental Verification of Automatic Classification Process Based
on K-Mer Frequency Statistics[C]//The International Conference on Cyber Security
Intelligence and Analytics. Cham: Springer Nature Switzerland, 2024: 391-400.

[7] Zhang Y. Research on Optimization and Security Management of Database Access Technology
in the Era of Big DatalJ]. Academic Journal of Computing & Information Science, 2025, 8(1):
8-12

74

Machine Learning Theory and Practice

[8] Pan Y. Research on the Design of a Real-Time E-Commerce Recommendation System Based on
Spark in the Context of Big Data[C]//2025 IEEE International Conference on Electronics,
Energy Systems and Power Engineering (EESPE). IEEE, 2025: 1028-1033.

[9] Yan J. Analysis and Application of Spark Fast Data Recommendation Algorithm Based on
Hadoop Platform[C]//2025 Asia-Europe Conference on Cybersecurity, Internet of Things and
Soft Computing (CITSC). IEEE, 2025: 872-876.

[10] Wu, H. (2025). The Commercialization Path of Large Language Models in Start-Ups.
European Journal of Business, Economics & Management, 1(3), 38-44.

[11] Xiu L. Analyses of Online Learning Behaviour Based on Linear Regression
Algorithm[C]//2025 IEEE International Conference on Electronics, Energy Systems and Power
Engineering (EESPE). IEEE, 2025: 1333-1338.

[12] Huang J. Resource Demand Prediction and Optimization Based on Time Series Analysis in
Cloud Computing Platform[J]. Journal of Computer, Signal, and System Research, 2025, 2(5):
1-7.

[13] Cai, Y. (2025). Research on Positioning Technology of Smart Home Devices Based on
Internet of Things. European Journal of A, Computing & Informatics, 1(2), 80-86.

[14] Xu D. Design and Implementation of AI-Based Multi-Modal Video Content Processing[J].
European Journal of A, Computing & Informatics, 2025, 1(2): 44-50.

[15] Zhu, Z. (2025). Cutting-Edge Challenges and Solutions for the Integration of Vector
Database and Al Technology. European Journal of A, Computing & Informatics, 1(2), 51-57.

[16] Huang, J. (2025). Reuse and Functional Renewal of Historical Buildings in the Context of
Cultural Heritage Protection. International Journal of Humanities and Social Science, 1(1),
42-50.

[17] Lai L. Data-Driven Credit Risk Assessment and Optimization Strategy Exploration[J].
European Journal of Business, Economics & Management, 2025, 1(3): 24-30.

[18] Lu, C. (2025). The Application of Point Cloud Data Registration Algorithm Optimization
in Smart City Infrastructure. European Journal of Engineering and Technologies, 1(1), 39-45.

[19] Ye, J. (2025). Optimization and Application of Gesture Classification Algorithm Based on
EMG. Journal of Computer, Signal, and System Research, 2(5), 41-47.

[20] Zhu, Z. (2025). Application of Database Performance Optimization Technology in Large-
Scale Al Infrastructure. European Journal of Engineering and Technologies, 1(1), 60-67.

75

