
Scholar Publishing Group

Distributed Processing System

https://doi.org/10.38007/DPS.2020.010302

ISSN 2790-0916 Vol. 1, Issue 3: 9-16

Copyright: © 2020 by the authors. This is an Open Access article distributed under the Creative Commons Attribution License (CC BY 4.0), which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
(https://creativecommons.org/licenses/by/4.0/).

9

Fault Handling Method of Distributed System Based on

Large Scale Dynamic Programming

Constantinos Kokkinos
*

Democritus University of Thrace, Greece

*
corresponding author

Keywords: Large Scale Network, Dynamic Planning, Distributed System, System Fault

Handling Method

Abstract: with the rapid improvement of Internet and information construction in all walks

of life, the traditional centralized storage system is gradually replaced by the distributed

storage system. Fault processing method based on distributed system is a research hotspot

in the field of power system fault identification. The purpose of this paper is to integrate

large-scale dynamic programming with distributed system fault handling methods.

Through the research of large-scale dynamic programming and its algorithm and

distributed system, the relevant fault handling methods are proposed. In the experiment, we

construct the system execution flow and use the dynamic planning algorithm to study and

analyze the usability and universality of the distributed system dynamic planning

application.

1. Introduction

With the improvement of the times and the progress of information technology, the distributed

power system is more stable and intelligent than before. However, the failure of the power system is

still unavoidable, and the failure is more diverse and complex [1]. This requires us to continue to

increase the research on fault handling methods of distributed power system, and fault identification

is the key issue. In this paper, the research on fault handling method of distributed system based on

large-scale dynamic programming is a breakthrough.

Distributed system is the main form of computer application with increasing scale and

complexity.Beschastnikh I studied that distributed systems pose unique challenges to software

developers. It may be difficult to understand the communication topology of the system and infer

the concurrent activities of the system host. The standard method of analyzing system logs may be a

tedious and complex process, including rebuilding system logs from logs of multiple hosts,

coordinating time stamps between hosts with asynchronous clocks, and understanding what

happened during the execution of log coding. In this paper, a new method is proposed to deal with

Distributed Processing System

10

the three tasks frequently executed in the process of distributed system execution analysis: to

understand the relative order of events; Searching for a specific mode of interaction between hosts;

As well as the similarities and differences of the recognition structures between paired executions

[2]. Merceedi K J proposed that in the past few days, data and Internet have become more and more

large and appear in big data. To solve these problems, there are many software frameworks to

improve the performance of distributed systems. The software is used to provide sufficient data

storage. One of the most useful software frameworks for leveraging data in distributed systems is

Hadoop. The software creates machine clusters and formats the work between them. Through

Hadoop, we can process, calculate and distribute each word in a large file, and know the number of

times each word is affected. The research aims to effectively store a large number of data sets and

transmit them to high bandwidth user applications [3].On the one hand, the continuous

improvement of system scale provides strong support for massive data storage and calculation, and

on the other hand, it brings great challenges to the operation, maintenance and monitoring of

business systems.

This paper studies large-scale dynamic programming and its algorithm, including dynamic

programming and large-scale network clustering algorithm, introduces distributed system and

analyzes the fault handling method of distributed power system based on large-scale dynamic

programming. In the experiment, the system execution flow is constructed and the dynamic

planning algorithm is used to study and analyze the usability of the distributed system dynamic

planning application and the universality of the distributed system dynamic planning application.

2. Research on Fault Handling Method of Distributed System Based on Large Scale Dynamic

Programming

2.1. Large Scale Dynamic Programming and its Algorithm

(1) Dynamic programming

Dynamic programming is a mathematical method for solving the optimization problem of

multi-stage decision-making process [4-5]. According to the characteristics of a class of

optimization problems of multi-stage decision-making process, the optimization principle for

solving such problems is proposed. The multi-stage decision-making optimization problem to be

solved is transformed into several sub stage problems, and each sub stage problem is solved by

using the mutual relationship of each stage. Many practical problems and mathematical models are

studied, thus a new branch of mathematical programming called dynamic programming is

established [6-7].

(2) Clustering algorithm for large scale networks

As the network scale continues to increase, the disadvantages of clustering algorithms that can

only deal with small-scale networks are prominent, and solving the scalability problem of these

algorithms has become an important topic. In addition, the acceleration of network evolution

requires more and more real-time graph clustering algorithms. Therefore, in recent years, more and

more scholars have paid attention to the research of large-scale network clustering algorithms [8-9].

At present, there are two main ways to solve the large-scale network clustering algorithm. One is to

reduce the scale of the network by removing nodes or edges; The second is to accelerate the

algorithm by optimizing the clustering algorithm [10-11].

Distributed Processing System

11

2.2. Distributed System

The distributed system is built on the computer network. The presentation layer, application layer,

logic processing layer, computing layer and data layer of the application software system are

logically and physically designed and distributed into a network. At the same time, the overall

system and each application node have the characteristics of high cohesion and high transparency

possessed by the software system [12-13]. Because of this characteristic of software, the distributed

system is different from the traditional centralized system in structure, function and working mode.

The distributed system has a high degree of cohesion, which is achieved in functions and modules.

Each application node in the system is highly autonomous and managed. These application nodes

work together under the support of the distributed system.

The distributed system is highly transparent, and can dynamically allocate tasks to each

application node, so as to realize the reasonable allocation of physical and logical resources

distributed among each application node. The distributed system is a complete and transparent

whole for the user's application system. The user does not need to know which application node the

task is executed on and which database node the data is saved in. The distributed architecture is

adopted and the original working mode of the user will not be changed [14-15]. Distributed systems

are gradually applied to more and more different types of applications, such as the following system

applications. Using distributed architecture has more advantages than other centralized system

architectures: high concurrent high-performance applications and high error tolerant applications.

2.3. Fault Handling Method of Distributed Power System Integrating Large-scale Dynamic

Planning

There are two kinds of fault signal processing methods in distributed power system: signal based

time domain analysis and signal based frequency domain analysis. The so-called signal based

time-domain analysis here refers to the results obtained by processing and analyzing the

time-domain signal sequence generated after the fault. It is the most direct and simple analysis

method. If the signal contains a large number of periodic components or simple harmonic

components, it is more effective [16-17]. The time domain analysis methods of signals mainly

include time domain average method, correlation analysis diagnosis method and time domain

waveform characteristic method. Frequency domain analysis is based on Fourier transform, which

expands the time domain signal with Fourier series to obtain information of different frequency

bands. It includes spectrum analysis and envelope analysis. Spectrum analysis can provide more

intuitive and easy to distinguish feature information, and its feature information can also be used for

signal trend estimation; Envelope analysis is mainly to extract the low-frequency signal in the signal.

From the time domain, this method is to obtain the envelope trajectory curve of the time-domain

waveform of the signal. Although these traditional signal processing technologies have been

relatively mature and reliable in theory and practical application, but they have great limitations, so

they are only applicable to the analysis of some stationary signals, and have no obvious effect on

non-stationary signals [18-19]. In order to obtain the fault feature quantity of the system more

effectively, more accurately and more conveniently, it requires us to analyze the signal from a new

and more comprehensive perspective. Therefore, the fault information feature quantity extraction

method based on non-stationary signal analysis deserves our in-depth study.

Distributed Processing System

12

3. Investigation and Research on Fault Handling Method of Distributed System Based on

Large Scale Dynamic Programming

3.1. Execution Process

The execution flow of dpx10 program is shown in Figure 1 without considering the occurrence

of fault:

Figure 1. Running flow logic diagram of the DPX 10

3.2. Dynamic Programming Algorithm:

The specific formula of dynamic programming state planning algorithm is as follows:

Algorithm 1 (2D / 0d): given D [I, 0] and D [0, J], 1 ≤ I, J ≤ n,

      ii y1j,iD,xj,1iDminj,iD  (1)

ix
,
 iy can be calculated in constant time.

Calculator 2(2D/1D):32473; defined w(i,j); 1≤i, j≤n; D(i)=0,1≤i,

        j,kD1k,iDminj,iwj,iD jki   (2)

4. Analysis and Research on Fault Handling Method of Distributed System Based on Large

Scale Dynamic Programming

4.1. Ease of Use of Distributed System Dynamic Planning Application

One of the goals of dpx10 is to provide developers with an easy way to write efficient distributed

dynamic planning applications. Therefore, this section uses the amount of code to evaluate the ease

of improving a dynamic planning program using dpx10. We compare the amount of code written by

using dpx10 and directly using X10 to write the same program. The preprocessing process,

post-processing process, comments and blank lines are not recorded. The code amount of

distributed dynamic planning application is shown in Table 1 and Figure 2:

Distributed Processing System

13

Table 1. Code quantity of the four dynamic planning applications (lines)

Apply X10(serial) X10(distributed) DPX10

SW 53 157 53

MI P 31 154 58

LPS 30 186 47

0/1KP 29 165 82

Figure 2. Dynamic planning and comparison diagram

The results show that the amount of code needed to write distributed programs directly using

X10 is about four times that of serial programs. Moreover, in different distributed program codes,

there are a large number of repetitive parts, such as distributed vertices and communication between

workers. Dpx10 will try its best to hide these tasks from the user, so that the user can focus on the

logic part of the algorithm.

4.2. Universality of Distributed System Dynamic Planning Application

Using the runtime of dpx10 fine-grained scheduler, dpx10 coarse-grained scheduler and z-align,

the experiment was run on 15 computing nodes. Both z-align and dpx10 have good scalability.

However, z-align is 2 times faster than coarse-grained dpx10 and about 9 times faster than

fine-grained dpx10. The comparison of algorithm running time is shown in Table 2 and figure 3:

0 20 40 60 80 100 120 140 160 180 200

SW

MI P

LPS

0/1KP

Value

A
p

p
li

ca
ti

o
n

DPX10 X10(distributed) X10(serial)

Distributed Processing System

14

Table 2. DPX10 vs. Z-align runtime comparison

Vertex number DPX10 (fine grain)
DPX10 (coarse

particle size)
Z-align

200M 19.321 7.514 3.652

400M 33.564 8.654 4.652

600M 45.515 9.395 5.961

800M 56.324 11.698 6.654

1G 67.365 16.685 7.841

Figure 3. Algorithmic data comparison figure

The experimental results are acceptable because z-align is a specially optimized system, and

dpx10 is a general system. Therefore, dpx10 must sacrifice part of its performance in exchange for

the ease of use and versatility of the distributed system.

19.321

33.564

45.515

56.324

67.365

7.514
8.654 9.395

11.698

16.685

3.652
4.652

5.961 6.654
7.841

200M 400M 600M 800M 1G

V
al

u
e

Vertex Number

DPX10 (fine grain) DPX10 (coarse particle size) Z-align

Distributed Processing System

15

5. Conclusion

With the improvement of the times, the single computer system can not meet the needs of users

in terms of computing speed and hardware resources, which promotes the rapid improvement of

distributed systems; At the same time, with the popularization of distributed systems in the industry,

the scale of distributed systems is expanding. This paper presents dpx10, a simple and powerful

abstract model for dynamic programming type applications, to realize a distributed system

integrating large-scale dynamic programming. Dpx10 uses both the shared memory model and the

distributed memory model to make full use of the computing power of the distributed hardware

environment. With the rapid improvement of large-scale distributed system, it has more and more

requirements. Moreover, due to the increasingly wide application of distributed systems in the

industry, the demand for mature distributed system monitoring technology will also increase. In the

future work, we will consider integrating large-scale dynamic planning to support larger scale

applications.

Funding

This article is not supported by any foundation.

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this

study.

Conflict of Interest

The author states that this article has no conflict of interest.

References

[1] Ahmed M K, Ali A, Aminu A A, et al. Multi-Agent based Capital Market Management System: A

Distributed Framework for Trading and Regulation. International Journal of Managing

Information Technology, 2020, 13(2):1-14.

[2] Beschastnikh I, Liu P, Xing A, et al. Visualizing Distributed System Executions. ACM

Transactions on Software Engineering and Methodology (TOSEM), 2020, 29(2):1-38.

[3] Merceedi K J, Sabry N A. A Comprehensive Survey for Hadoop Distributed File System. Asian

Journal of Computer Science and Information Technology, 2020, 11(2):46-57.

[4] Fabris M, Michieletto G, Cenedese A. A Proximal Point Approach for Distributed System State

Estimation. IFAC-PapersOnLine, 2020, 53(2):2702-2707.

[5] Tabasi M, Asgharian P. Optimal operation of energy storage units in distributed system using

social spider optimization algorithm. AIMS Electronics and Electrical Engineering, 2019,

3(4):309-327.

[6] Tabasi M, Asgharian P. Optimal operation of energy storage units in distributed system using

social spider optimization algorithm. International Journal on Electrical Engineering and

Informatics, 2019, 11(3):564-579.

[7] Patil P, Bagwan T, Kulkarni S, et al. Multi-Attacks Detection in Distributed System using

Machine Learning. International Journal Of Computer Sciences And Engineering, 2019,

Distributed Processing System

16

7(1):601-605.

[8] Arif E. Implementing a Distributed System as a Solution to Problems in the Indosat Cooperative.

JURNAL PETIK, 2019, 5(2):24-29.

[9] Widerski M, Gwd M. Solar Power Plant with Distributed System of PV Panels. Przeglad

Elektrotechniczny, 2019, 95(2):55-58.

[10] Mingnan, Zhou, Dahai, et al. An Efficient Code-defect Testing Distributed System. IOP

Conference Series: Materials Science and Engineering, 2019, 490(4):42038-42038.

[11] Seshadri G, Marutheswar G V. A Novel Architecture for Series-Connected Photovoltaic

Distributed System with Enhanced Power Quality Using Type-II Fuzzy Controller.

International Journal of Intelligent Engineering and Systems, 2018, 11(4):177-187.

[12] Basinya E A. Distributed system of collecting, processing and analysis of security information

events of the enterprise network infrastructure. Bezopasnost Informacionnyh Tehnology, 2018,

25(4):43-52.

[13] Wuning, Tong, Song, et al. Fault-Tolerant Scheduling Algorithm with Re-allocation for

Divisible Loads on Homogeneous Distributed System. IAENG Internaitonal journal of

computer science, 2018, 45(3):450-457.

[14] Ahad M A, Biswas R. PPS-ADS: A Framework for Privacy-Preserved and Secured Distributed

System Architecture for Handling Big Data. International Journal on Advanced Science

Engineering and Information Technology, 2018, 8(4):1333-1342.

[15] Chowhan R S, Dayya P. Next Generation in Computing with Agent Oriented Distributed

System: Protocols and Features. Oriental Journal of Computer Science & Technology, 2018,

11(2):126-134.

[16] Abhijit A, Sulabha S. Performance Enhancement of Distributed System through Load

Balancing and Task Scheduling. International Journal of Computer Applications, 2018,

181(3):20-26.

[17] Fedorov A, Ovseevich A. Asymptotically optimal dry-friction like control for a simplest

distributed system. IFAC-PapersOnLine, 2018, 51(32):87-92.

[18] Hanane C, Battou A, Baz O. Performance Security in Distributed System: Comparative Study.

International Journal of Computer Applications, 2018, 179(15):29-33.

[19] Burdonov I B, Kossatchev A S. Directed distributed system: Backtracking problem.

Proceedings of the Institute for System Programming of RAS, 2018, 30(2):167-194.

