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Abstract: Oil and gas fires are frequent disasters that occur during oil and gas storage and 

transportation. In order to prevent the occurrence of oil and gas fires and reduce human and 

material losses, this paper studied the risk prediction of oil and gas fires based on the 

fusion of fuzzy fault tree analysis (FFTA) and Bayesian network (BN) algorithm. Firstly, 

by conducting statistical analysis of accidents, 9 causal factors leading to oil and gas fires 

were identified. A fuzzy fault tree was established with oil and gas fire accidents as the top 

event, management issues, oil product issues, protection failures, and hazardous states as 

intermediate events, and 9 causal factors as basic events. The logical network connections 

between the fault trees were utilized to organize the causal relationships between each 

causal factor, and mapping relationships were used to connect the fault tree with Bayesian 

networks. Finally, combined with expert evaluation, fuzzy processing was performed to 

obtain the probability of occurrence for each root node (causal factor), and then the prior 

probabilities of intermediate nodes and leaf nodes were obtained through logical operations 

and Bayesian network full probability formulas. Through backward inference analysis, it 

was found that the posterior probability of the intermediate event “dangerous state” was 

relatively high. Combined with sensitivity analysis, it can be concluded that the 

fundamental cause of the intermediate event “dangerous state” is the basic event 

“equipment damage”, and the fundamental cause of the intermediate event “protection 

failure” is the basic event “protective system failure”. Therefore, it is recommended to take 

measures such as regular maintenance and inspection, installation of fault monitoring and 

early warning systems, backup equipment, backup power supply, development of 

emergency plans and training, and regular drills and evaluations. These measures help to 

improve the reliability and stability of protective systems and reduce the potential risk of 

oil and gas fires. 
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1. Introduction 

The safety of oil and gas storage and transportation is an important issue in the oil and gas 

industry, which is directly related to the safety of people’s lives and property and the stability of 

social and economic development. In the process of storage and transportation, once an accident 

occurs, it may cause serious casualties, environmental pollution, and economic losses, bringing 

immeasurable impacts to society. 

At present, the analysis of oil and gas fire mainly focuses on the qualitative analysis of the cause 

of the first accident. The research mainly explains the occurrence of oil and gas fires by identifying 

and describing the causes of oil and gas fires. Based on various risk accidents of oil and gas stations 

and yards, Fan Yong's research [1] deeply analyzed the safety issues of oil and gas fires from 

multiple aspects such as management, operation, operation and norms, and revealed the significant 

impact of management and operation errors on fire risks. Zhang Xinlin's research [2] discussed in 

depth the causes of oil and gas equipment failures, combined oil and gas fire prevention measures 

with big data technology, and created mobile storage and transportation equipment with equipment 

as storage and transportation point using the Internet platform, so as to achieve optimal 

management and maintenance of oil and gas storage and transportation process, thus improving the 

efficiency of risk prevention and control. Hosseinnia Davatgar B[3] evaluated the importance of 

safety barriers in the prevention of major accidents through the analysis of safety equipment in oil 

and gas accidents, focused on the application of risk-based analysis on the Goliat platform, and 

extended it to related safety systems to assess dynamic risks throughout the plant. Dimaio F[4] uses 

multi-state Bayesian networks to simulate and evaluate the functional performance of safety gates 

in oil and gas plants. It uses the multi-state Bayesian network model to analyze and explain the 

hazards involved in the relevant plant processes, and proposes methods to simplify the risks. 

Although these qualitative analysis methods can effectively explain various causes of oil and gas 

fires, they are limited in describing the quantitative impact of each factor on the occurrence of 

accidents. In order to make up for the deficiency of qualitative analysis, fault tree analysis and 

Bayesian network are widely used in the quantitative analysis of oil and gas fires. The combination 

of these two methods can give full play to their respective advantages and significantly improve the 

comprehensiveness, accuracy and practicability of risk analysis. Fault tree analysis [5] provides a 

qualitative analysis of the system fault structure, and reveals the logical relationship between 

various fault events through the hierarchical decomposition of the system fault modes. On the other 

hand, Bayesian network [6] can carry out probabilistic quantitative analysis on this basis, and 

transform qualitative reasoning into quantitative probabilistic inference, so as to evaluate the risk of 

the system more comprehensively. The combination of this method can not only effectively 

quantify the impact of various factors on the occurrence of accidents, but also reflect the change of 

system status in real time by dynamically updating the probability distribution, which provides a 

solid scientific basis and decision support for the prevention and emergency management of oil and 

gas fires. 

On this basis, some scholars put forward the method of fuzzy fault tree to solve the 

non-deterministic problem of event state except certain occurrence or certain non-occurrence [7-9]. 

The introduction of fuzzy set processing into fault tree and Bayes has the characteristics of more 

flexible modeling, improving fault tolerance rate and dealing with uncertainty, so as to better 

support the analysis and decision of the system. According to the literature reviewed so far, fuzzy 

fault tree analysis method is more commonly used in fault diagnosis and reliability analysis of 

systems or equipment [10-11], and there is no report on the research on the causes of oil and gas 

storage and transportation fire accidents. 

Therefore, this paper used a combination of fuzzy fault tree and Bayesian network method. Fault 
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tree was used to explain the logical relationship between various basic events and the top event 

caused by basic events. Bayesian network provides a probability formula from the occurrence of 

basic events to the occurrence of top events. The mapping relationship between the fault tree and 

the Bayesian network connects the two, supplemented by the fuzzy set theory of natural language 

transformation of fuzzy numbers and comprehensive evaluation calculation to obtain the probability 

of basic event occurrence. With the basic probability of event occurrence, the logical relationship 

between various events, and the Bayesian total probability formula, it is possible to derive and 

calculate the probability of oil and gas fire risk and backward deduce the main factors that cause 

risk events, in order to achieve risk prevention and provide theoretical support for the refinement, 

precision, and efficiency of control work. 

2. Statistics of Causal Factors for Oil and Gas Fire Risk 

According to the statistical analysis of typical oil and gas fire and explosion accidents that have 

occurred in the past few years [12-13], it is found that the vast majority of oil and gas fire and 

explosion events are related to 9 approximate causal factors [14-16]. The names and number of 

events related to each causal factor are shown in Table 1. 

Table 1. Names and number of events related to causal factors 

Incident name Number of incidents

54

13

3

9

10

8

18

44

61

Regulatory loopholes

Managerial negligence

Explosion of petroleum products

Oil spillage

Harmful gases released from oil and gas

Failure of protective system

Damage to protective equipment

Equipment damage

Thermal radiation  

3. Risk Assessment Methods for Oil and Gas Fires 

Starting from the probability of the occurrence of 9 causal factors and their logical relationship, 

this paper systematically sorts out how the causal factors lead to the formation of oil and gas fire 

risk events from bottom to top. Fault tree models and Bayesian network models are built for oil and 

gas fire risk analysis and assessment. 

3.1 Establishment of Fault Tree Model 

Fault tree modeling is a graphical method used to analyze the mechanisms of system failures and 

accidents. The method takes the top event not occurring as the top, and models various possible 

fault causes leading to the top event not occurring through a tree structure. By using the logical 

relationship between the events of the fault tree, the path leading to the non-occurrence of the top 

event can be identified and the corresponding protection measures can be proposed.With the help of 

fault probability calculation, probability values are assigned to each basic event in the fault tree, and 

these probability values can be assigned to higher-level nodes through and gates or gate logic gates, 

and so on, the failure probability of the whole system can be calculated [17-18].This method 

provides an important theoretical basis and practical tool for system reliability analysis, and is of 
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great significance for improving the safety and reliability of the system. The fault tree model 

consists of event nodes, logic gates, and top events. Among them, event nodes represent possible 

faults or events that may occur in the system; logic gates represent the logical relationships between 

events; the top event indicates the final system failure or accident. By analyzing the fault tree, 

potential fault causes and modes in the system can be identified; the reliability and safety of the 

system can be evaluated; corresponding prevention and control strategies can be formulated. 

Through careful observation and contemplation of the 9 causal factors, it is found that there exist 

both independent AND or logical relationships between events and priority or sequential 

relationships between them. Therefore, these factors can be constructed as a fault tree model. “Oil 

and gas fire” is selected as the research object; fault tree analysis method is applied; the FFTA 

model for emergency response of oil and gas fire accidents is established. The top event is a fire 

accident in the oil and gas area (T). Oil and gas fire incidents can be connected by four intermediate 

events: management issues (M1), oil issues (M2), protection issues (M3), and hazardous states (M4) 

through OR logic gates. This means that as long as one of the four intermediate events occurs, the 

top event can definitely occur. The four intermediate events can be connected by 9 causal factors 

through the AND or gate. The fault tree of oil and gas fires is shown in Figure 1, and the 

correspondence between basic events and codes is shown in Table 2. 
T

M1 M2 M3 M4

X1

X2

X3 X4 X5

X6

X7

X8

X9

  

 

Figure 1. Fault tree models 

Table 2. Basic events 

Code Basic events

T Oil and gas fires

M1 Management issues

M2 Oil problems

M3 Failure of protection

M4 Dangerous state

X1 Regulatory loopholes

X2 Managerial negligence

X3 Explosion of petroleum products

X4 Oil spillage

X5 Harmful gases released from oil and gas

X6 Failure of the protective system

X7 Damage to protective equipment

X8 Equipment damage  
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3.2 Establishment of Bayesian Network Model 

Bayesian network model is a graphical model based on Bayesian probability model, which is 

used to model the dependency relationship between random variables [18-19]. Bayesian networks 

use directed acyclic graphs to represent dependencies between variables, where nodes represent 

random variables and arrows point to represent dependencies between variables. Bayesian network 

theory is widely used in security engineering, financial risk, monitoring and detection, medical 

diagnosis and other fields. Bayesian network can be used to assess the risk of a project in security 

engineering, analyze the impact of various possible factors on the project risk, and establish the 

dependency relationship of risk factors for quantitative analysis and prediction. In medical 

diagnosis, Bayes can be used to monitor diseases, help doctors determine the source of diseases, 

verify the health status of patients, and provide accurate prediction for subsequent diagnosis by 

establishing the relationship between diseases. In the financial field, Bayesian network can be used 

for credit risk assessment, market risk assessment and money laundering risk identification, etc. By 

establishing the relationship between variables, including transaction amount, fund liquidity and 

historical repayment records, it can help maintain the security and stability of the financial system. 

Therefore, Bayesian networks provide powerful tools and methods for the modeling and analysis of 

complex systems, and provide important theoretical support for the processing of complex model 

reasoning decisions.A Bayesian network is a directed acyclic graph, where nodes represent random 

variables and arcs represent conditional probability dependencies between them. The “directed” 

refers to the fact that the direction of the arrows used to connect different nodes is fixed, and the 

order of the starting point and the ending point cannot be switched, which means that the logical 

relationship from cause to effect cannot be reversed. “Acyclic” refers to starting from any node and 

not being able to return to that point again through several edges, that is, there is no loop in the 

graph. The starting node connecting two non conditional independent random variable nodes is 

“cause”, and the ending node is “result”. The structure of a directed graph can simulate the causal 

structure of a modeling domain. When the structure is causal, the interactions between its variables 

provide visual information and can predict the effects of external manipulation. Bayes can perform 

forward inference to obtain the prior probability of child node events, and can also perform 

backward diagnosis to obtain the posterior probability of parent node events. Among them, the total 

probability formula is used to calculate the prior probability, and the Bayesian formula is used to 

calculate the posterior probability. 

The topology of a Bayesian network is a Directed Acyclic Graph (DAG) where the nodes 

represent random variables and the arcs between the nodes represent conditional probability 

dependencies between these variables. "Directed" means that the edges used to connect different 

nodes have a fixed direction, that is, the order of the starting point and end point of the edge cannot 

be switched, which indicates that the direction of causality is irreversible, and thus reflects the 

logical flow from cause to effect. "No loop" means that there is no loop in the graph, that is, starting 

from any node, through a number of edges cannot return to the node. This acyclic nature ensures 

that there are no cyclic dependencies in the network, allowing the inference process to proceed 

unambiguously. In a Bayes network, the start node of a connection between two non-conditionally 

independent random variable nodes usually represents "cause" and the end node represents "effect". 

The structure of the directed graph can effectively simulate the causal structure in the modeling 

domain. When the structure of the network reflects causality in the real world, it is able to provide 

visual information on the interactions between variables. This structure not only helps to understand 

the complex dependencies within the system, but can also be used to predict the effects of external 

manipulation, and by manipulating one variable in the network, infer its effects on other related 

variables. Bayesian networks can perform both forward inference and backward diagnosis. Forward 
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inference is used to calculate the prior probability of the child node event, that is, to infer the 

probability of the child node occurrence when the state of the parent node is known. This reasoning 

process relies on the total probability formula to obtain the total prior probability of the child node 

by integrating the probability information on different paths. Backward diagnosis is used to 

calculate the posterior probability of the parent node event, that is, to infer the occurrence 

probability of the parent node when the state of the child node is known. The posterior probability 

of the parent node is derived by updating the conditional probability distribution using Bayesian 

formula. Bayesian networks have significant advantages in modeling uncertain and complex 

systems. It can not only express the conditional dependence relationship between variables 

intuitively, but also provide quantitative analysis tools through accurate mathematical reasoning. 

Both in theoretical research and practical application, Bayesian networks show strong descriptive 

and predictive ability, and are widely used in medical diagnosis, risk assessment, decision support 

and other fields. Its flexibility and accuracy make it an important tool for dealing with complex data 

and uncertainty problems. 

Assuming that the causal factors of a hazardous event are B1, B1,..., Bn, and that each causal 

factor is incompatible with each other, the probability of each causal factor occurring is greater than 

0. The total probability formula is shown in Formula 1: 

P(A) = ∑ P[Bi]P[A|Bi]
n
i=1        (1) 

3.3 Mapping Relationship between Fault Tree and Bayesian Network 

You Bingyu [20] proposed an innovative method combining fault trees and Bayesian networks. 

The method models the relationship between events through Bayesian networks, while the failure 

tree is utilized to model each failure basic event. Modeling using the combination of these two 

approaches provides a more comprehensive and accurate framework for system feasibility and 

stability analysis, which helps in system failure prediction and risk assessment. The use of fault 

trees and Bayesian networks at the same time makes the insight deeper, helping engineers better 

understand the operating mechanism and potential risks of the system, providing the optimal design 

path and decision support for the system.This research is important for the development of the 

safety engineering field.[21] The mapping relationship between Bayesian network and fault graph 

includes both image mapping and numerical mapping. Image mapping is to map the basic event Xi, 

intermediate event Mi, and top event T of the fault tree to the root, intermediate, and leaf nodes of 

the Bayesian network model, respectively. Numerical mapping maps the failure probability of the 

fault tree to a prior probability of the Bayesian network, while transforming the logic gates into a 

conditional probability table of the Bayesian network. The mapping principle of mapping fault trees 

to Bayesian networks is shown in Figure 2, and the logical mapping principle is shown in Figure 3. 

Bottom events

Root nodes

Intermediate 

events

Intermediate 

nodes

Top events

Leaf nodes

Fault tree

 

Bayesian networks

 

Figure 2. Mapping rules 
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Figure 3. Principle of logical mapping 

X1 and X2 are child nodes, and Y is the parent node. P(Y = 1|X1 = 0, X2 = 1) = 1 indicates 

that when the child node X1 does not occur and X2 occurs, the parent node Y occurs. 

4. Forward Calculation of Probability of Occurrence 

4.1 Fuzzy Set Theory 

Fuzzy set theory is used to deal with fuzzy concepts and fuzzy information, and is a 

mathematical tool to deal with uncertainty. In the general concept of number theory, an element can 

only belong to the set or not belong to the set, and there are clear boundaries. However, in fuzzy set 

theory, there is no such strict subordination or non-subordination relationship, and only a 

membership degree is used to represent the dependency between elements and sets. After the 

membership degree is introduced, all kinds of fuzzy information can be better processed, thus 

supporting all kinds of fuzzy reasoning and decision making methods.In fuzzy set theory [22-24], 

an arbitrary domain U is given, and the independent variable x is any number in the domain U. If x 

corresponds to F(x) one by one under the correspondence rule F, F(x) is called the fuzzy set of U. 

The expression of fuzzy number formula F(j,k,l,m) is shown in Equation 2. 

F(j, k, l, m) =

{
 
 

 
 
x−j

k−j
                  j ≤ x < k

1                   k ≤ x < l
m−x

m−l
               l ≤ x ≤ m

0             x < j, x > m

                 (2) 

4.2 Expert Opinion Handling 

In order to obtain the probability of 9 bottom events (root nodes) occurring, 15 oil and gas fire 

experts are invited to evaluate the occurrence (True) and non occurrence (False) states of 21 low 

events (root nodes) in oil and gas fires using a seven level natural language (seven level natural 

language and fuzzy tree are shown in Table 3). Due to differences and inaccuracies in natural 

language among experts, in order to eliminate the impact of these properties on the results, this 

paper uses the similarity fusion [25-27] processing method to perform comprehensive operations 

and reduce the differences in expert evaluations. The similarity fusion method is a commonly used 

technique in the fields of data mining and information retrieval, used to merge multiple similarity 
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measures into a comprehensive similarity value. This technology can be used in a variety of 

neighborhood applications, including information recognition, book retrieval and autonomous 

driving. In many applications, it is necessary to compare the similarity between two objects, such as 

text similarity, image similarity, user interest similarity, etc. The similarity fusion method aims to 

integrate these similarity measures from different sources into a comprehensive similarity value, in 

order to more accurately represent the degree of similarity between objects. The advantage of 

similarity fusion method is to consider information from many aspects and multiple dimensions, 

and combine them organically according to different characteristics and similarity, so as to grasp 

and understand the relationship between data more comprehensively. Expert Zi(i=1,2,…,15) 

evaluates a certain background event of an oil and gas fire using natural language. Based on the 

fuzzy numbers corresponding to natural language in Table 3, a series of calculations can be 

performed on the fuzzy numbers to verify the consistency and credibility of the expert language. 

The calculation process is as follows. 

(1) Evaluation of similarity (Sd) 

Evaluation of similarity refers to the degree of consistency between the evaluations of two 

experts on the same event. The higher the rating similarity, the more credible the evaluation results 

are. The evaluation of similarity Sd is generally between 0 and 1 (0 indicates no similarity between 

the two, and 1 indicates almost identical). The evaluation formula of similarity Sd for the evaluation 

of the same event by two experts m and n (m and n can be taken as 1, 2, 3,..., 15) is shown in 

Formula 3. In Formula 3, q
i
 refers to the fuzzy number evaluated by expert q on node Xi: 

𝑆𝑑(𝑍𝑚,𝑛) = 1 −
1

4
√∑ (𝑝𝑖 − 𝑞𝑖)24

𝑖=1            (3) 

(2) Evaluation of average agreement (𝐴𝑔𝑒) 

𝐴𝑔𝑒(𝑍𝑃) =
1

𝑚−1
∑ 𝑆(𝑅𝑞 , 𝑅𝑞)
𝑀
𝑞=1
𝑝≠𝑞

                (4) 

(3) Evaluation of relative agreement (𝐴𝑣𝑒) 

𝐴𝑣𝑒(𝑍𝑃) =
𝐴𝑔𝑒(𝑍𝑝)

∑ 𝐴𝑔𝑒(𝑧𝑃)
𝑀
𝑝=1

                 (5) 

(4) Prediction of consensus coefficient (𝐶𝑢𝑠) 
𝐶𝑢𝑠(𝑍𝑝) = 𝛽𝜔(𝑍𝑝) + (1 − 𝛽)𝐴𝑣𝑒(𝑍𝑝)            (6) 

The weight of expert p is represented by ω(Zp), which is very important in similarity fusion 

method. The weight represents the contribution of the expert to the event. Although in reality, the 

weights of each expert should be different, in order to simplify calculations, experts with similar 

backgrounds are often selected to have the same weights. The relaxation factor β is a correction 

term. 

(5) Comprehensive evaluation of fuzzy number Ri−G 

Ri−G = Cus(Z1)R1 + Cus(Z2)R2+. . . +Cus(Zm)Rm       (7) 

(6) Comprehensive evaluation of fuzzy number Ri−G for deblurring 𝑢𝑖−𝐺 

𝑢𝑖−𝐺 =
∫𝐹(𝑥)𝑥𝑑𝑥

∫𝐹(𝑥)𝑑𝑥
                        (8) 

(7) 𝑢𝑖−𝐺 is normalized, and the probability P(Xi−G) for node Xi to have a state G∈(Ture or 

False) is: 

P(Xi−G) =
ui−G

∑ ui−j
n
j=1

                (9) 

In Formula 9, n represents the total number of states at risk of system operation, and j represents 

the state. 
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Table 3. Natural language changes and their fuzzy sets 
Natural language variables Fuzzy sets

Very Low(VL) (0,0.1,0.1,0.2)

Low(L) (0.1,0.2,0.2,0.3)

Fairly Low(FL) (0.2,0.3,0.4,0.5)

Medium(M) (0.4,0.5,0.5,0.6)

Fairly High(FH) (0.5,0.6,0.7,0.8)

High(H) (0.7,0.8,0.8,0.9)

Very High(VH) (0.8,0.9,1.0,1.0)  

4.3 Root Node Occurrence Probability Calculation 

This paper takes the risk event oil explosion (X3) as an example, and calculates the probability 

P(X3) when the oil explosion state is true based on Formulas 3 to 9. The evaluation of 15 oil and gas 

fire risk experts on oil explosion (X3) is shown in Table 4. 

(1) Consistency test and comprehensive calculation of expert fuzzy evaluation 

According to Formulas 3 to 6, the similarity Sd, average agreement 𝐴𝑔𝑒, relative agreement 𝐴𝑣𝑒, 

and consensus coefficient 𝐶𝑢𝑠 of risk event X3 are calculated and tested separately. In order to 

ensure the objectivity and credibility of the evaluation results, this paper specifically selects 15 oil 

and gas risk experts with similar professional abilities and experience for evaluation. The weights of 

each oil and gas risk expert are equal, with ω=0.072, and the relaxation factor β is set to 0.5. 

According to the calculation results (as shown in Table 5), it is found that the similarity (Sd) of risk 

event X3 for each oil and gas risk expert is as high as 0.9, indicating a high degree of consistency 

among oil and gas risk experts in evaluating the same risk event. In addition, the relative agreement 

(𝐴𝑣𝑒) remains largely consistent. Overall, these data further enhance the relative objectivity and 

credibility of the expert evaluation results of oil and gas risks, providing strong support for the 

analysis of this paper. 

Table 4. Evaluation results of experts on oil explosion incidents 

Risk factors Node status Z1 Z2

X3(Explosion of petroleum 

products)

TRUE FL FL

FALSE H FH

Risk factors Node status Z3 Z4

X3(Explosion of petroleum 

products)

TRUE L FL

FALSE FH VH

Risk factors Node status Z5 Z6

X3(Explosion of petroleum 

products)

TRUE FL FL

FALSE FH FH

Risk factors Node status Z7 Z8

X3(Explosion of petroleum 

products)

TRUE L FL

FALSE H H

Risk factors Node status Z9 Z10

X3(Explosion of petroleum 

products)

TRUE FL FL

FALSE H VH

Risk factors Node status Z11 Z12

X3(Explosion of petroleum 

products)

TRUE FL FL

FALSE H H

Risk factors Node status Z13 Z14

X3(Explosion of petroleum 

products)

TRUE FL FL

FALSE H H

Risk factors Node status Z15

X3(Explosion of petroleum 

products)

TRUE FL

FALSE H   
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Table 5. Expert calculations of Sd, 𝐴𝑔𝑒, 𝐴𝑣𝑒, and 𝐶𝑢𝑠 for oil explosion events 

Evaluation indicator s Metr ic values Evaluation indicator s Metr ic values Evaluation indicator s Metr ic values Evaluation indicator s Metr ic values

0.956 Age(Z1) 0.977 Ave(Z1) 0.2513 Cus(Z1) 0.244

Sd(Z13) 0.933 Age(Z2) 0.971 Ave(Z2) 0.2492 Cus(Z2) 0.239

Sd(Z14) 0.966 Age(Z3) 0.976 Ave(Z3) 0.2444 Cus(Z3) 0.25

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

Sd(Z115) 0.994 Age(Z13) 0.969 Ave(Z13) 0.2555 Cus(Z13) 0.246

Sd(Z23) 1 Age(Z14) 0.964 Ave(Z14) 0.2513 Cus(Z14) 0.228

Sd(Z24) 1 Age(Z15) 0.943 Ave(Z15) 0.2349 Cus(Z15) 0.239

... ...

... ...

... ...

Sd(Z1314) 0.964

Sd(Z1315) 1

Sd(Z1415) 0.899

R 0.13365 0.23367 0.31342 0.41344

Sd(Z12)

3-True  
(2) Probability P(X3) of occurrence of risk event X3 

According to Formula 8, the result 𝑢𝑖−𝐺 of deblurring the comprehensive evaluation fuzzy 

number Ri-G can be calculated, as shown in Formula 10. 

𝑢3−𝑇𝑟𝑢𝑒 =
*∫ (

𝑥
0.10002) 𝑥𝑑𝑥 + ∫ 𝑥𝑑𝑥 + ∫ (

0.41334 − 𝑥
0.10002 ) 𝑥𝑑𝑥

0.41344

0.31342

0.31342

0.22537

0.23367

0.13365
+

*∫ (
𝑥

0.10002) 𝑥𝑑𝑥 + ∫ 𝑑𝑥 + ∫ (
0.41334 − 𝑥
0.10002 )

0.41344

0.31342
𝑥

0.31342

0.23367

0.23367

0.13365
+

 

=0.2337                                                      (10) 

Finally, according to Formula 9, the probability P(X3) of node X3 occurring can be obtained, as 

shown in Formula 11. 

P(X3) =
u3−True

u3−True+u3−False
= 0.329             (11) 

Referring to the above process, the probability of occurrence of underlying events X1-X9 can be 

calculated sequentially, as shown in Table 6. 

Table 6. Probability of occurrence of bottom level events at each node of oil and gas fires 

Risk nodes Probability of occurrence

X1 Regulatory loopholes 0.64

X2 Managerial negligence 0.75

X3 Explosion of petroleum products 0.67

X4 Oil spillage 0.77

X5 Harmful gases released from oil and gas 0.71

X6 Failure of protective systems 0.75

X7 Damage to protective equipment 0.85

X8 Equipment damage 0.88

X9 Thermal radiation 0.93
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4.4 Probability Calculation of Intermediate Nodes and Leaf Nodes 

Taking the intermediate node M1 (management issue) as an example, the probability of 

occurrence of the intermediate node is calculated. The intermediate node M1 is connected to its root 

nodes X1 (regulatory vulnerability) and X2 (negligence by management) through an OR logic gate 

(as shown in Figure 1). According to the mapping relationship, the conditional probability of 

intermediate node M1 is: 

P(M1 = True|X1 = True, X2 = True) = 1         (12) 

P(M1 = True|X1 = True, X2 = False) = 1         (13) 

P(M1 = True|X1 = False, X2 = True) = 0         (14) 

P(M1 = True|X1 = False, X2 = False) = 0         (15) 

The Bayesian network total probability Formula 1 is used to calculate the occurrence probability 

of intermediate node M1: 

P(M1 = True) = P(X1 = True)P(X2 = True) + P(X1 = True)P(X2 = False) + P(X1 =
False)P(X2 = True) = 0.12            (16) 

Due to the fact that all research events are binary events, the probability of M1 not occurring is: 

P(M1 = False) = 1 − P(M1 = True) = 0.88       (17) 

By substituting the probability of each bottom event into the same conditional probability 

calculation formula for calculation, the probability of occurrence for each intermediate node and 

leaf node can be obtained. The specific calculation results are detailed in Figure 4. The 

comprehensive probability of occurrence of oil and gas fire risk is 0.71. It is worth noting that 

among these events, the probability of intermediate event M4 (that is, dangerous state) occurring is 

the highest, significantly higher than the probability of other events occurring. Therefore, to ensure 

safety, special attention needs to be paid and corresponding protective measures should be taken, 

such as strengthening fire prevention measures, improving the safety performance of equipment, 

conduct a comprehensive safety risk assessment on a regular basis, formulate a detailed and 

effective danger emergency plan and conduct regular emergency drills, strengthening on-site 

monitoring and personnel training, in order to reduce the possibility of dangerous states occurring, 

and timely responding to potential dangerous states to ensure the safety and stability of oil and gas 

production and operation. 

 

Figure 4. Positive inference analysis of oil and gas fire risk 
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5. Backward Inference 

5.1 Backward Inference Calculation 

Backward inference is the calculation of the posterior probability of occurrence for each node 

based on the assumption that the top event T (oil and gas fire) must be definitely occurred. The 

calculation formula is shown in Formula 18. 

P(Mi = True|T = True) =
P(T=True|Mi=True)P(Mi)

∑ P(T=True|MI=True)P(MI)
n
i=1

      (18) 

This paper is based on the assumption that the top event T (oil and gas fire) must be inevitably 

occurred, so the probability of setting its state to True is 100%. By using Formula 18 for backward 

inference, the posterior probabilities of each intermediate event are obtained. The specific results 

are shown in Figure 5. According to the analysis results in Figure 5, it is observed that the posterior 

probabilities of intermediate events M4 (that is, dangerous state) and M3 (that is, protection failure) 

are 0.91 and 0.8, respectively, which are significantly higher than the posterior probabilities of other 

intermediate events. It can be seen that in the process of oil and gas storage and transportation, it is 

necessary to attach great importance to the occurrence of these two risk events. Therefore, stricter 

safety measures should be taken to strengthen safety awareness training, including but not limited to 

providing fire emergency response training, on-site safety operation training, emergency evacuation 

drills, etc., to ensure that all staff can proficiently master the methods and skills to deal with 

dangerous situations. The safety operating procedures are strictly followed to minimize the 

probability of these two risk events and ensure the safety and stability of the oil and gas storage and 

transportation process. 

 

Figure 5. Backward inference analysis of oil and gas fire risk 
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5.2 Sensitivity 

When there is a slight change in the probability of a bottom event occurring, the probability of an 

intermediate event also changes accordingly. However, different bottom events have different 

impacts on the change of the intermediate event. Sensitivity analysis[28-29] is used to calculate the 

probability of different bottom events occurring under the same intermediate event. The one with 

the highest probability of a bottom event occurring is the one that has the greatest impact on the 

intermediate event. This paper uses GENIE software for sensitivity analysis [30], and conducts 

sensitivity analysis on intermediate events M4 (dangerous state) and M3 (protection failure) with a 

high posterior probability of occurrence. 

According to the results in Table 7, it can be seen that in the underlying events (X8 equipment 

damage, X9 thermal radiation) of intermediate event M4 (hazardous state), X8 equipment damage 

has the highest sensitivity, indicating that the impact of equipment damage on M4 (hazardous state) 

is greater than that on X9 thermal radiation. It can be inferred that the root cause of the dangerous 

state is equipment damage. Therefore, it is necessary to conduct a certain degree of pre job training 

for relevant personnel before work, standardize their operations, and strengthen the frequency of 

inspections by management personnel to reduce the probability of equipment damage. 

According to the results in Table 8, it can be seen that the sensitivity of X6 protective system 

failure is highest in the underlying events (X6 protective system failure, X7 protection equipment 

damage) of intermediate event M3 (protection failure), indicating that the impact of protection 

system failure on M3 (protection failure) is greater than that of X7 protection equipment damage. It 

can be inferred that the root cause of protection failure is a malfunction of the protective system. 

Therefore, it is best to pre run and check whether the protective system is functioning properly 

before each operation of the system. It is necessary to strengthen the sense of responsibility of 

maintenance personnel and use information technology to detect faults in advance. 

Table 7. Sensitivity analysis of oil and gas fire risk M4 

Risk nodes Mutual information Sensitivity %

Dangerous state 0.68764 100

The device is damaged 0.64992 94.4

Thermal radiation 0.34766 50.6
 

Table 8. Sensitivity analysis of oil and gas fire risk M3 

Risk nodes Mutual information Sensitivity %

Failure of protection 0.59644 100

Failure of the protection system 0.54766 91.8

Protective equipment is damaged 0.26546 44.5
 

6. Conclusions 

This paper proposed a model for predicting the risk of oil and gas fires. In order to maintain the 

objectivity of the evaluation results, this paper applied fuzzy set theory on the basis of the fault tree 

model. To calculate the prior probability of risk events, the fault tree model was mapped to a 

Bayesian network. The fault tree model provided clear and logical relationships between risk events, 

while Bayesian networks provided calculation formulas from root node probability to intermediate 

node probability and leaf node probability. The method in this paper can not only infer the prior 



International Journal of Big Data Intelligent Technology 

 
 

34 
 

probability of risk events forward, but also backward infer the posterior probability of intermediate 

events that trigger the top event and the fundamental event with the greatest impact. However, there 

are also some shortcomings. The basis for the statistical analysis of causal factors in this paper is 

based on previous accident reports. Over time, new causal factors may emerge and fail to be 

analyzed in a timely manner. Subsequent work can consider establishing a real-time updated system 

network and timely statistical analysis of new causal factors. 
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