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Abstract: In this paper, an improved A* algorithm based on fused Theta* is proposed. 

Firstly, the traditional search strategy of the A* algorithm is changed to a jumping search 

strategy, which intelligently determines which nodes need to be expanded and which nodes 

do not need to be expanded at each step of the expansion, based on the direction that the 

parent node is expanding from, and whether there is any obstacle and its location 

information around it, The idea of Theta* algorithm is also introduced to check whether the 

nodes in the final path can be directly connected, if so, the intermediate nodes are skipped 

and the intermediate path is pruned. The improved A* algorithm is then combined with the 

Bessel curve optimization algorithm to eliminate redundant inflection points in the robot's 

path, resulting in a smoother and near-optimal path. As analyzed by simulation 

experiments, compared to the traditional A* algorithm, the improved A* algorithm 

shortens the path length by 4.34%, reduces the computation time by 76.9%, and reduces 

the number of search nodes by 67.4%. The experimental results show that the fusion 

algorithm improves the efficiency of path planning, increases the stability and path 

smoothness, and is easier to apply in practice. 

1. Introduction 

In the field of modern path planning, finding an optimal path from the starting point to the end 

point is a challenging task
[1]

, especially in complex and changing environments. Traditional path 

planning algorithms, such as the A* algorithm
[2]

, Dijkstra's algorithm
[3]

, and the BFS algorithm
[4]

, 
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tend to produce too many inflection points when dealing with path planning in open areas, resulting 

in paths that are not smooth enough, and the computational efficiency needs to be improved. In 

order to solve these problems, researchers have proposed a variety of improvement strategies, a path 

enhancement method is proposed in literature
[5]

 to shorten the path length by determining whether 

the line between neighboring path nodes passes through an obstacle or not. The bi-directional A* 

algorithm is utilized in literature
[6]

 and literature
[7]

, which reduces the number of search nodes, but 

still suffers from many inflection points and proximity to obstacles. Literature
[8]

 proposed a hybrid 

heuristic function based on the original heuristic function, which improves the computational 

efficiency of the algorithm, but it is easy to fall into the risk of local optimization in the case of 

more obstacles. Literature
[9]

 and literature
[10]

 extend the traditional A* algorithm to an infinite 

number of search directions based on the 8 search directions, which greatly reduces the number of 

bending points, but ultimately the time taken is too long. 

To address the above challenges, this paper proposes an improved A* algorithm based on fused 

Theta* optimization. The algorithm not only inherits the high efficiency of the A* algorithm and the 

path-smoothing property of the Theta* algorithm, but also further smoothes the paths by 

introducing Bessel curves, and at the same time adopts the jump-point search and the improved 

heuristic function to accelerate the search process. This fusion strategy not only significantly 

improves the efficiency of path planning, but also generates smoother and more intuitive paths in 

complex environments, which further enhances the practicality and adaptability in application 

scenarios such as mobile robots. 

2. Traditional A* algorithm 

The essence of the A* algorithm is the heuristic search algorithm, based on the classical 

Dijkstra's algorithm a heuristic function is introduced, calculate the cost of each neighboring node 

using the valuation function ( )f n ,thereby improving the computational efficiency of path 

planning
[11]

 .The valuation function is calculated as follows: 

( ) ( ) ( )f n h n g n                            (1) 

Where ( )g n denotes the actual cost consumed from the starting point to the current node. ( )h n is 

the heuristic function used to estimate the predicted cost from the current node to the target node. In 

extreme cases, when ( )h n =0, ( )f n = ( )g n , Considering only the actual cost, path planning is 

prioritized to ensure that the shortest path is found, at this point the algorithm degenerates into 

Dijkstra's algorithm, this path planning approach leads to too many search nodes and reduces the 

efficiency of the search; When ( )h n = ( )g n , At this time, the optimal path can be found very quickly, 

however, in practice it is difficult to calculate the distance to the target point, so it is difficult to 

implement; When ( )g n =0, ( )f n = ( )h n , that is, only the estimated cost needs to be considered, at 

this time, the algorithm may degenerate into the BFS algorithm, this method has fewer search nodes 

and can search quickly, but it cannot guarantee to find the optimal path. 

The choice of ( )h n directly affects the algorithm speed and accuracy. The heuristic function is 

usually calculated using Manhattan distance[12] or Euclidean distance[13].Euclidean distance 

algorithm 1( )h n , Manhattan distance algorithm 2 ( )h n , the expression is: 

2 2

1( ) ( - ) ( - )j i j ih n X X Y Y                   (2) 

2( ) j i j ih n X X Y Y                         (3) 
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Where ( , )i iX Y represents the starting point position coordinates, ( , )j jX Y represents the target 

point position coordinates. 

3. I mproved A* algorithm 

3.1 JPS_Theta* algorithm 

The traditional A* algorithm has problems in search efficiency and convergence speed 
[14]

. In 

response to these problems, the traditional A* algorithm was improved, and the main innovations of 

the JPS_Theta* algorithm is as follows: 

Jump point search: The JPS_Theta* algorithm searches for nodes in jumps, and only for nodes 

that match the search rules are considered, by filtering out some representative jump points. This 

avoids searching too many redundant nodes and reduces the space and time complexity of the 

search. The jump point search strategy is divided into two main aspects, one is the cropping of 

neighboring nodes and the other is the screening of jump points. 

(1) Neighbourhood node cropping 

Let the current extended node be X and node ( )P x be the parent of node X .  0 1, ,..., id n n n  

denotes a loop-free path starting from the start node 0n and ending at the goal node in .The 

symbol \d X ,indicates that the path d does not contain node X . ()Path denotes the path distance 

function. For example,   ( ), ,Path P x X n is the path distance from node ( )P x , arriving at 

node n , and passing through node X .   ( ),...,Path P x n is the path distance from node ( )P x , 

arriving at node n , and not passing through node X . 

The rules followed above to filter the search nodes are as follows: Discard inferior nodes, i.e., 

nodes in the gray raster region of the graph, from the parent node ( )P x without passing through the 

current node ( X node) and directly arrive at the required cost is less than or equal to the node from 

the parent node to arrive at the current node ( X node), and then to arrive at the inferior node 

required cost of the node. Consider natural nodes, i.e., nodes in the white raster region of the graph. 

For the node to be extended, its neighboring nodes can be categorized into two types of states: 

without obstacles and with obstacles. 

(a) Searching neighboring nodes without obstacles  

If there is no obstacle in the neighboring nodes of the current to-be-extended node X , as shown 

in Fig. 1, the gray neighboring nodes around it can be discarded. Since the cost of reaching all gray 

nodes without going through node X from its parent node ( )P x is less than or equal to the cost of 

going through node X , there is no need to extend it. For example, the shortest path for a node to 

reach that node can be reached directly by its parent node ( )P x  without having to go through 

node X . The cost of the path is the same for the solid and dashed lines as in Fig.1, the gray nodes in 

the graph are called the inferior nodes of node X, and the white nodes are called the natural 

neighbor nodes of node X . 

For the extension in the linear direction, the node tailoring can be expressed by equation (4): 

( ( ),..., \ ) ( ( ), , )Path P x n X Path P x X n                 (4) 

For the extension in the diagonal direction, which is slightly different from the extension in the 

linear direction, i.e., the cost of the path without passing through node X needs to be smaller than 

the cost of passing through node X , the node tailoring can be expressed by equation (5): 
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( ( ),..., \ ) ( ( ), , )Path P x n X Path P x X n                (5) 

    

(1) linear direction            (2) diagonal direction 

Figure 1 No obstacle nodes around the node 

(b) Neighboring nodes with obstacles 

If there is an obstacle in the neighboring node of the current node X to be extended, as shown in 

Fig. 2, where the black grid indicates the obstacle, for the gray grid, the same does not need to be 

extended according to the above description. And for node n , node n is considered to be a 

mandatory neighbour of node X if the path cost from the parent node ( )P x to node n via the current 

node X is lower than the cost of any other path that does not lead directly to node n via node X . 

      
(1) linear direction         (2) diagonal direction 

Figure 2 Obstacle nodes around the node 

Node cropping with obstacles around neighboring nodes can be expressed by equation (6):  

( ( ), , ) ( ( ),..., \ )Path P x X n Path P x n X                 (6) 

(2) Screening of jump points 

As shown in Fig. 3, the algorithm adds only the jump points that meet the search planning to the 

priority queue during the extended search for paths, and a node is said to be a jump point if it 
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satisfies the following conditions. The steps are as follows:  

Step 1: A node is a jump point if it is either a start or an end point. In Fig. 3, node S is both the 

start point and the jump point, and node G is both the end point and the jump point. 

Step 2: A node is a jump point if there are forced neighbor nodes around the node. According to 

the above description of neighbor node cropping, there exists a forced neighbor node B at node A in 

the graph, then node A is a jump point. 

Step 3: If the current node is extended diagonally from its parent node and the node is able to 

reach the jump point during the search along the horizontal or vertical direction, the node is also a 

jump point. For example, node C in the graph is extended from its parent node A along the diagonal 

direction, and node C is able to reach the jump point D in the process of searching along the 

horizontal direction (there exists a forced neighbor node F at node D, so D is a jump point), so node 

C is also a jump point. 

 

Figure 3 Jump Point Screening Process 

Improvement of the heuristic function: Traditional algorithm's do not meet the actual needs, and 

it is vital to choose the right one, In this paper, which propose an improved heuristic function by 

combining the advantages of the Chebyshev distance 
[15]

, and then add the corresponding weighting 

factors, The search valuation function ( )f n of the weighted algorithm is 

( ) ( ) * ( )f n g n w h n                          (7) 

In equation (7), 

2.0 ( ) 12

0.8 ( ) 12

h n
w

h n


 


              (8) 

2 2 1

1

( )
dist dist dist

h n
dist others


 


              (9) 

In equation (9), 

1 i jdist X X                             (10) 

2 i jdist Y Y                               (11) 
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Where, w is the weighting factor and n  denotes the current node in the Open List 

table ( )g n denotes the path generation value from the starting point to n . ( )h n  is the heuristic 

function and ( , )i iX Y  and ( , )j jX Y are the coordinates of the nodes respectively. 

Theta* algorithm: The core of the Theta* algorithm lies in the idea of checking, for the nodes in 

the path, whether there exists a direct access to the latter node between the three points without 

passing through an intermediate node and without passing through an obstacle at the same time. If 

such a path exists and the total cost of reaching the current node via this path is lower, then the 

intermediate node is skipped. To operate on the path from Fig. 3, the cases can be categorized into 

two types of cases: passing through obstacles and not passing through obstacles. This is shown in 

Fig. 4. 

(1) Passing through an obstacle 

For the process of starting point S passing through intermediate point A and then to point C, if 

the path connecting point S to point C is directly connected, this path will pass through the gray 

obstacle, it is regarded as the case of passing through the obstacle, and this case is not feasible, and 

the original path is retained. 

(2) No passing of obstacles 

For the path from point A through the intermediate point C and then to point D, if the path 

connecting point A to point D between this path does not pass through the obstacle, it is regarded as 

the case of not passing through the obstacle, and at the same time the distance of the path from point 

A directly to point D is shorter than that of the previous arrival through the intermediate point, so it 

will skip the intermediate point C, and pruning operation will be carried out on the path of AC,CD. 

 

Figure 4 route pruning process 

The flow of the JPS Theta* algorithm is shown in Figure 5. 

In order to verify the effectiveness of the JPS Theta* algorithm, simulation experiments were 

conducted to compare it with the conventional A* algorithm in a static environment. The system 

used for the simulation environment is Windows 11 and the simulation platform is matlab Fig. 6, 

Fig. 7 and Fig. 8 represent the simulation results of conventional Astar algorithm, JPS algorithm 

and JPS Theta* algorithm respectively. 
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Figure 5 JPS Theta* algorithm flow chart 

 

Figure 6 Traditional A* algorithm 



International Journal of Big Data Intelligent Technology 

119 
 

 

Figure 7 JPS algorithm 

 

Figure 8 JPS_Theta* algorithm 

The red squares are the starting point, the blue squares are the end point, the planned paths are 

represented by yellow line segments, and the light blue squares are the nodes that have been visited 

during the path search. A comparison of the algorithm performance metrics is shown in Table 1. 

Table 1 Simulation experiment data statistics 

Algorithms Number 

of turns 

Track 

length/cm 

Number of 

search nodes 

Calculation 

time/s 

Tradition

al A* 

algorithm 

8 40.55

6 

181 2.56 

JPS 

algorithm 

8 40.55

4 

59 0.58 

JPS_Thet

a* algorithm 

7 38.79 59 0.59 

According to the data in Table 1, it can be seen that the JPS_Theta* algorithm shortens the length 

of the trajectory from 40.55cm to 38.79cm in a simple raster environment map of 20×30 compared 

with the traditional A* algorithm, The number of search nodes is reduced from 181 to 59,the 

computation time is reduced from 2.56s to 0.59s. Therefore, combining the four indicators of the 

algorithm, JPS Theta* search algorithm has more advantages. 
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3.2. Bezier curve optimization 

As can be seen from Figure 8, the path generated by the improved JPS Theta* algorithm has 

many inflection point problems. Therefore, a cubic Bezier curve optimization algorithm [16] is 

introduced to remove the concave and convex points in the path to make it smooth and continuous. 

By formula 

,

0

( ) ( )
n

i i n

i

B t p b t



                           (12) 

The mathematical expression of the Bezier curve when n=3 can be obtained as: 

,3

0

( ) ( )
n

i i

i

B t p b t


                             (13) 

 

Where, 

, ( ) (1 )i n i

i n

n
b t t t

i

 
  
 

                         (14) 

Where, , ( )i nb t
 is the Bernstein polynomial, tϵ[0,1],i=0,1,2,......,k-1 

Derivation of t on the basis of Eq. (12) yields: 

'

1 , 1

0

1
1

1

0

( ) ( ) ( )

1
( ) (1 )

n

i i i n

i

n
i n i

i i

i

B t n p p b t

n
n p p t t

i

 




 





 

 
   

 




                 (15) 

When the vector interpolation of each node of the cubic Bezier curve is a constant, which 

denotes a cubic uniform Bezier curve. The expression of the i-th cubic uniform Bezier curve is: 

3

,

0

( ) ( )i i i n

i

B t p b t


                             (16) 

From formula (12, 14, 16), the basis function expression of cubic Bezier curve can be obtained 

as: 

1,3 0 1

2 2

2,3 0 1 2

3 2 2 3

3,3 0 1 2 3

( ) (1 )

( ) (1 ) 2 (1 )

( ) (1 ) 3 (1 ) 3 (1 )

B t t P tP

B t t P t t P t P

B t t P t t P t t P Pt

   


    
       

         (17) 

Where t is the normalized variable, 0P
､ 1P 2P

 and 3P
 are the four control points of the 

curve. 

The simulation after the fusion of JPS Theta* algorithm and Bessel curve optimization is shown 

in Fig. 9.The yellow line is the path generated by the JPS Theta* algorithm, and the green curve is 

the path generated by fusing the Bessel curve optimization. It can be seen that the paths generated 

by incorporating the Bessel curve optimization algorithm are shorter and smoother. 



International Journal of Big Data Intelligent Technology 

121 
 

 

Figure 9 Optimized Fusion of JPS_Theta* and Bessel Curve 

4. Mobile Robot Simulation Experiment 

The previous section describes the significant performance improvement of the JPS Theta* 

algorithm over the traditional A* algorithm in the matlab simulation environment. In order to 

further verify the significant advantages of the JPS Theta* algorithm, the JPS Theta* algorithm will 

be deployed and experimentally analysed in the ROS simulation environment in this paper. 

4.1 Experimental platforms 

Figure 10 shows the ROS simulation experiment environment with Ubuntu system 20.04 and 

ROS version noetic. Build the simulation environment in Gazebo and display it graphically. The 

simulation cart is equipped with LiDAR and the corresponding environment map is constructed by 

Cartographer laser SLAM map building algorithm [17] as shown in Figure 11. 

4.2 Global path planning experiment 

 

Figure 10 Gazebo simulation environment 
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Figure 11 Environmental maps built by Cartographer SLAM 

 

Figure 12 Traditional A* algorithm 

   

Figure 13 JPS algorithm 
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Figure 14 JPS Theta* algorithm 

 

Figure 15 Fusion Bessel curve optimisation algorithm 

Table 2 shows the algorithmic performance index of the two algorithms in path planning, it can 

be seen that the JPS Theta* algorithm is better than the traditional A star algorithm in terms of both 

the path length and the search time, and the planned paths have smaller twists and turns and better 

smoothness. 

Table 2 Comparison of search results 

Algorithms Trajectory 

length/m 

Plan time /ms 

Traditional A* 9.75 4.56 

JPS 8.65 2.29 

JPS_Theta* 7.43 2.33 

4.3 Experiments with local path planning algorithms incorporating TEB 

The TEB algorithm is an efficient local path planning method for mobile robots in dynamic 
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environments. The optimisation process of the TEB algorithm is based on a graph optimisation 

framework, which is usually implemented using a nonlinear optimisation approach. In the 

optimisation process of the TEB algorithm, the main concern is to minimise a cost function which 

consists of several components including path length, obstacle avoidance, time optimisation and 

satisfying dynamic constraints. The solution is then solved by G2O, which in turn obtains the 

robot's velocity, angular velocity information and drives the robot. 

The path length cost of the robot in the TEB algorithm can be represented by (18): 

1

1

1

|| ||
N

len i i

i

C p p






 
                        (18) 

where 1ip   and ip  denote the positions of two consecutive bit positions on the path, N is the 

total number of bit positions on the path, and || . ||  denotes the Euclidean distance. 

The obstacle avoidance cost can be expressed by (19) 

1

1 1

max(0, || ||)
N M

obs safe i j

i j

C d p o


 

  
              

(19) 

where jo  denotes the position of the jth obstacle, M is the total number of obstacles, safed  is 

the safe distance, and max(0, )x denotes that a cost is incurred only when the distance between the 

robot and the obstacle is less than the safe distance. 

The time optimisation cost can be expressed by (20): 

1

1

N

time i

i

C t




 
                           

(20) 

Where, it denotes the time interval required to reach two consecutive bit positions on the path. 

The dynamic constraint cost can be expressed by (21): 

1

max max

1

(|| || || ||)
N

dynamic i i

i

C v v a a




   
              

(21) 

Where, iv  and ia denote the velocity and acceleration at the ith position, respectively, and maxv  

and maxa are the maximum allowable values of velocity and acceleration, respectively. 

The optimisation objective is to minimise the sum of the above cost functions can be expressed 

by (22): 

( ) len len obs obs time time dynamic dynamicf T C C C C      
        

(22) 

Where, len , obs , time , dynamic  are the weight coefficients of the respective cost terms. 

The optimal sequence of local path points can be obtained by the optimal solution of the G2O 

solution, which can be expressed by Eq. (23):  

 * argTT f T                          (23) 

The robot navigation process is shown in Figure 16 and is based on the ROS visualization tool 

Rviz. The gray area is the unknown area not scanned by LiDAR, the black place is the obstacle 

scanned by the laser, the starting point of the robot is at the center point of the map, the green arrow 

mark indicates the final goal point location of the robot, and the red line segments with arrows are 

the paths generated by the fusion TEB algorithm. At moment t1, the target point information in the 
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unknown environment is sent down to the robot through Rviz. Moments t2-t5 are for the robot to 

navigate while building the map, and the fusion algorithm continues to plan new local paths as 

obstacles are continuously scanned. The robot can plan a trajectory that satisfies the relevant 

constraints of the robot during the travelling process, and is able to plan a feasible trajectory to 

avoid obstacles in a timely manner after detecting obstacles, and the path is smooth, so as to reach 

the target point safely and efficiently in the end. 

 
  T=t1 

  
T=t2         T=t3 

  
T=t4                      T=t5 

Figure 16. Fusion of TEB algorithms for local path planning 
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The experimental results proved that coping with the influence of unknown obstacles in the 

environment on the robot's navigation is solved by using the fusion TEB algorithm, which can meet 

the practical needs of navigation and obstacle avoidance, and the effect is obvious. 

5. Conclusions 

The JPS_Theta* algorithm carries out several optimizations on the traditional A* algorithm. 

Firstly, on the basis of the traditional A*, it proposes a jump-point search strategy and the idea of 

Theta*, which picks out the nodes that only conform to the search rules, replaces the traditional A* 

algorithm's evaluation of each neighboring node, and thus reduces the amount of computation, and 

at the same time, it performs the pruning operation of the paths, which reduces the lengths of the 

paths, and improves the efficiency of path planning. Aiming at the problem that there are many 

inflection points in the paths, the generated paths are smoothed and optimized by using 3rd order 

Bessel curves to remove the bumps in the paths, which reduces the number of iterations for node 

selection and the inflection points of the paths. Finally, the improved algorithm is fused and 

experimented in a simulation scenario to verify the feasibility and effectiveness of the proposed 

algorithm. 
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