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Abstract: To achieve the goal of enhancing the resolution of Sentinel-2 satellite remote 

sensing images by a factor of four, this paper innovatively proposes a super-resolution 

model (S2SR) that combines VMamba and Transformer technologies. By skillfully 

introducing the Mixed Attention Block (MTB) and Cross Attention Block (CAMB), the 

model effectively integrates the channel attention mechanism with two-dimensional 

selective scanning technology. This design not only enhances the synergistic utilization of 

global and local features but also significantly improves the interaction capability of 

cross-window information through the overlapping cross-attention mechanism, effectively 

suppressing the common block effect issue in traditional super-resolution methods and 

thereby significantly enhancing the quality of reconstructed images. Experimental results 

demonstrate that on the SEN12MS standard dataset, the S2SR model exhibits superior 

performance compared to existing advanced methods in multiple no-reference image 

quality assessment metrics (such as NIQE, BRISQUE, PIQE). Especially when processing 

images with complex geographical features, the super-resolution images generated by the 

S2SR model exhibit clear edges and rich details, fully verifying the efficiency and 

practicality of the model. 

1 Introduction 

Satellite remote sensing imagery plays a crucial role in numerous fields, including agriculture, 

environmental protection, land use, urban planning, natural disaster monitoring, hydrology, and 

climate research. With continuous advancements in technologies such as optical instruments, the 

spatial resolution of satellite imagery has seen significant improvements. For instance, the 

WorldView-3/4 satellites are capable of providing 8-band multispectral data with a ground resolution 

as high as 1.2 meters. However, the utilization of such data requires payment, and when it comes to 
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large-area coverage or multi-temporal analysis, the cost of data becomes a significant constraint. 

Therefore, exploring the utilization of openly accessible data with acceptable spatial quality, such as 

those provided by satellite programs like Landsat or Sentinel, has emerged as a worthwhile research 

direction. 

The Sentinel-2 project utilizes two satellites to achieve remote sensing coverage of equatorial 

regions globally every five days, providing multi-resolution layers composed of 13 spectral bands. 

Among these, the four bands of visible red (B4), green (B3), blue (B2), and near-infrared (B8) 

(RGBN) offer images with a 10m resolution, while the other bands provide images with 20m and 

60m resolutions, respectively. The 10m and 20m resolution bands are frequently applied in fields 

such as land cover, hydrological mapping, agriculture, and forestry, while the 60m resolution bands 

are primarily used for monitoring water vapor and other purposes. Due to Sentinel-2's open data 

distribution policy, its 10m resolution RGBN images are increasingly becoming an important 

resource for many applications. However, such spatial resolution remains inadequate for many 

applications. On the other hand, high-resolution (up to 2m) multispectral images provided by 

commercial satellites like WorldView, due to their high cost, cannot be widely used in large-area or 

multi-temporal analyses [1]. 

To fully leverage the free availability of Sentinel-2 imagery while achieving a spatial resolution 

close to 2m, it is of practical significance to investigate methods for spatially enhancing 

low-resolution images through post-processing techniques, which can recover high-frequency details 

to produce high-resolution images. To improve the spatial resolution of Sentinel-2 imagery, some 

studies have attempted to fuse data from different spatial resolution bands of Sentinel-2 to obtain 

higher-resolution images. However, this paper focuses more on methods that directly utilize 10m 

resolution images to achieve super-resolution analysis (SR). 

In the field of image super-resolution (SR) research, early studies such as those by Li et al. 

provided effective solutions based on dictionary learning and sparse coding techniques [2]. 

Subsequently, Lei et al. applied structural self-similarity and compressive sensing to SR tasks [3], 

while Shao et al. improved SR performance by adopting multiple different image representation 

spaces [4]. In recent years, deep learning has received increasing attention in the field of 

super-resolution analysis. Deep learning does not require direct modeling of the relationship between 

high-resolution (HR) and low-resolution (LR) bands; with sufficient training data, deep learning 

networks can, in principle, learn very complex nonlinear relationships. Among them, methods based 

on convolutional neural networks (CNNs) can effectively utilize high-order features of images for 

image super-resolution analysis, significantly enhancing SR performance. Dong et al. proposed the 

SRCNN network with high learning capabilities based on CNNs and optimized the network using 

pixel loss, but the results were overly smooth due to the lack of consideration for perceptual quality 

[5]. Since the successful application of deep learning to super-resolution tasks, CNN-based methods 

have emerged endlessly and have almost dominated this field in the past few years. Meanwhile, due 

to the success of Transformers in the field of natural language processing [6], they have attracted 

attention in the field of computer vision. A series of Transformer-based methods have been developed 

for advanced visual tasks, including image classification, object detection, segmentation, etc. 

Although vision Transformers have demonstrated superiority in modeling long-range dependencies, 

many works have shown that convolutions can help Transformers achieve better visual 

representations. Due to the outstanding performance of Transformers, they have also been introduced 

to low-level visual tasks. The Swin Transformer (SwinIR) has demonstrated excellent performance in 

image super-resolution (SR) [7]. However, due to the limited range of pixels utilized, SwinIR may 

restore incorrect textures. Furthermore, we can observe obvious blocking artifacts in the intermediate 

features of SwinIR, which are caused by the window partitioning mechanism, indicating that the 

shifted window mechanism is inefficient in establishing cross-window connections. Some works 
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targeting advanced visual tasks have also pointed out that enhancing the connections between 

windows can improve window-based self-attention methods. 

To overcome the aforementioned limitations and further explore the potential of Transformers in 

super-resolution (SR) tasks, we have designed the MTOG module and introduced it into SR tasks, 

constructing the S2SR super-resolution analysis model. Notably, within our designed MTOG module, 

we concurrently utilize the VMamba-based SS2D module and the Transformer-based overlapping 

cross-attention block [8]. This is primarily due to the highly complementary nature of VMamba and 

Transformers, which allows this structure to simultaneously activate more pixels for reconstruction, 

enabling almost all pixels in the image to be visible and enabling the recovery of correct and clear 

textures. 

2 Analysis of Sentinel-2 Image Super-Resolution (S2SR) 

The task of super-resolution (SR) is inherently a pixel-intensive one, as its goal is to recover 

high-resolution (HR) details from low-resolution (LR) images. During this process, the model needs 

to perform dense computations at each pixel location to predict and generate new pixel points in the 

higher-resolution image. Therefore, modeling the contextual relationships among pixel points is 

particularly important in SR tasks. Based on this, the authors have designed the MTOG module and 

introduced it into SR tasks, constructing the S2SR super-resolution analysis model. Notably, within 

our designed MTOG module, we concurrently utilize the VMamba-based SS2D module and the 

Transformer-based Overlapping Cross-Attention (OCA) block. This is primarily due to the highly 

complementary nature of VMamba and Transformers. This structure can simultaneously activate 

more pixels for reconstruction, enabling almost all pixels in the image to be visible and allowing for 

the recovery of correct and clear textures. VMamba is characterized by its ability to model long-range 

dependencies in long sequences, likely benefiting from its parameterization method that enables 

VMamba to store information from long sequences. However, VMamba is an autoregressive model 

that typically exhibits unidirectionality, such as good temporal properties and causal sequence 

modeling. Compared to Transformers, it cannot model the relationships between sequence elements. 

Transformers have demonstrated powerful advantages across various tasks, but they struggle with 

processing long-sequence information. 

2.1 Overall Structure 

As shown in Figure 1, the overall network consists of three parts: shallow feature extraction, deep 

feature extraction, and image reconstruction. This architectural design has been widely applied in 

previous works. Specifically, for a given low-resolution (LR) input 
inCWH

LR R ∈ I


, we first utilize a 

convolutional layer to extract shallow features 
CWH

0 R ∈ F 

, where inC  and C denote the number of 

channels for the input and intermediate features, respectively. Subsequently, deep features are 

extracted using a series of Mixed-Attention Transformer Organic Groups (MTOGs) and a 3×3 

convolutional layer
)(HConv  . After that, we add a global residual connection to fuse the shallow 0F

 

and deep features 
C×W×H

D R ∈ F , and then reconstruct the high-resolution result through the 

reconstruction module. As illustrated in Figure 2, each MTOG contains several Mixed-Attention 

Blocks (MTBs), a Cross-Attention Mixed Block (CAMB), and a 3×3 convolutional layer with a 

residual connection. For the reconstruction module, a pixel shuffle method is employed to upsample 

the fused features. We optimize the network parameters using the loss function 1L  . 
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Figure 1. Architecture of the Super-Resolution Analysis Network (S2SR) 

 

Figure 2. Structure of the Mixed Attention Residual Group (MTOG) 

2.2 Mixed Attention Block (MTB) 

When employing channel attention, more pixels are activated due to the incorporation of global 

information in computing the channel attention weights. Furthermore, numerous studies have 

demonstrated that convolutions can assist Transformers in obtaining superior visual representations 

or achieving more straightforward optimization. Therefore, we integrate convolutional blocks based 

on channel attention into standard Transformer blocks to enhance the representation capability of the 

network. As illustrated in Figure 3, within the standard Swin Transformer block, an Overlapping 

Cross-Attention block (OCA) is inserted in parallel after the first LayerNorm (LN) layer, alongside a 

2D Selective Scanning (SS2D) module. In the SS2D module, the input block is traversed along four 

distinct scanning paths (cross-scanning), and each sequence is independently processed by different 

state-space model blocks (SSM + Selection) that integrate an input-dependent selection mechanism. 

Subsequently, the results are merged to construct a 2D feature map (cross-merging) as the final output. 

Notably, similar to previous practices, shifted window-based self-attention (adopted within SS2D) is 

intermittently applied across consecutive MTBs. To avoid potential conflicts between CA and SS2D 

in terms of optimization and visual representation, we multiply the output of CA by a small constant 
 . For a given input feature X, the entire computation process of the MTB is as follows: 

LN(X) = XN  

 
X + ) αCAB(X + ) MSA(X-(S)W = X NNM  (1) 
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MM X + ))MLP(LN(X = Y  

Where NX
 and MX  denote intermediate features, and Y represents the output of the Mixed 

Attention Block (MTB). Specifically, we treat each pixel as an embedded token (i.e., performing 

block embedding with a block size set to 1). MLP stands for Multi-Layer Perceptron. For the 

computation of the self-attention module, given an input feature of size C × W × H , self-attention 

2M

HW

 is first computed within each window MM . For local window features
 R ∈ X C×M

W

2

, the 

query, key, and value matrices, denoted as Q, K, and V, respectively, are computed through linear 

projections. Then, the window-based self-attention computation formula is: 

 B)V + d/SoftMax(QK = ) V K, Q,Attention( T

 (2) 

 

Figure 3. Mixed Attention Block (MTB) 

 
 

Figure 4. Overlapping Cross-Attention Block (OCA) 

 

Figure 5. 2D Selective Scanning (SS2D) 
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2.3 Cross-Attention Module Block (CAMB) 

We introduce the Cross-Attention Module Block (CAMB) to directly establish cross-window 

connections and enhance the representational capability of window-based self-attention. Our CAMB 

consists of a cross-attention (CA) layer and a multi-layer perceptron (MLP) layer, similar to the 

standard Swin Transformer block. However, for the CA layer, as shown in Figure 6, we employ 

different window sizes to partition the projected features. Specifically, for input features X , QX
, KX ,

C×W×H

V R ∈ X
and , QX

non-overlapping windows of size are used for M × M  , while KX  
 XV

non-overlapping windows of size 00 M × M
 are used for 

2M

HW

and . The computation is performed as 

follows: 

 
M × γ+ (1 = Mo ）

 (3) 

Where γ is a constant that controls the size of the overlap. To better understand this operation, the 

standard window partitioning can be viewed as a sliding partition with both the kernel size and stride 

equal to the window size M. In contrast, overlapping window partitioning can be seen as a sliding 

partition with a kernel size equal to 
 Mo and a stride equal to 2

M

, ensuring consistency in the size of 

overlapping windows. The computation of the attention matrix is shown in Equation 2, and relative 

position biases 
oMM

R ∈ B


are also adopted. Unlike window self-attention (WSA), where the queries, 

keys, and values are computed from the same window feature, CA computes keys/values from a 

larger context, allowing for more useful information to be queried. It is worth noting that, although 

the Multi-resolution Overlapping Attention (MOA) module in [reference] performs a similar 

overlapping window partitioning, our CA fundamentally differs from MOA because MOA uses 

window features as tokens to compute global attention, whereas CA computes cross-attention using 

pixel tokens within each window feature. 

 

Figure 6. Cross-Attention Module Block (CAMB) 

3 Experiments and Results 

The proposed model, S2SR, along with other comparison models such as EDSR8-RGB[9], 

RCAN[10], RS-ESRGAN[11], and TS-SRGAN[12], were all run in the PyTorch environment, 

utilizing modules provided by the "sefibk/KernelGAN," "xinntao/BasicSR," and "Tencent/Real-SR" 

projects on GitHub. 
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Since the source images used are already the highest resolution (10m) images from the Sentinel-2 

satellite, there are no actual high-resolution ground truth images (2.5m resolution) available for 

comparison with the generated images. Consequently, some commonly used image quality 

assessment metrics, such as PSNR and SSIM, are no longer applicable in this scenario. Therefore, 

this paper adopts no-reference image quality assessment (NR-IQA) metrics, including NIQE[13], 

BRISQUE[14], and PIQE[15]. The evaluation values for NIQE, BRISQUE, and PIQE can be 

calculated using the corresponding functions niqe, brisque, and piqe in Matlab, respectively. The 

output results of these three functions are all within the range of [0, 100], where a lower score 

indicates better perceived quality. 

The 784 images in ROI_Te were processed using the EDSR8-RGB, RCAN, RS-ESRGAN, and 

S2SR models to generate x4 high-resolution images, and the NIQE, BRISQUE, and PIQE evaluation 

values for these images were calculated individually using Matlab. Table 1 provides the mean and 

extreme values based on the evaluation metrics. The proposed S2SR model outperforms the other 

models on various no-reference image quality assessment (NR-IQA) metrics. Figures 7-9 show the 

generated images of selected areas with strong geographical features in "ROIs1158_spring_106" for 

intuitive comparison of the differences between the different models. By comparing images of 

different terrains, it is evident that the images processed by the traditional BiCubic method are the 

most blurred and smooth due to the inherent limitations of interpolation algorithms. The 

EDSR8-RGB, RCAN, and RS-ESRGAN models fail to correctly distinguish noise with sharp edges, 

resulting in blurred outcomes where even houses and roads are indistinguishable. As shown in the 

results of the proposed S2SR, the boundaries between objects such as roads, bridges, and houses and 

the background are clearer, indicating that the noise estimated by our model is closer to real noise. 

Compared with the EDSR8-RGB, RCAN, and RS-ESRGAN models, the results of the proposed 

S2SR are clearer without any blurring. 

Table 1. Statistical Data for NIQE, BRISQUE, and PIQE Evaluation Values 

 EDSR8-RGB RCAN RS-ESRGAN T S2SR 

NIQE 

mean 
5.851 5.041 4.108 3.743 2.286 

NIQE max 6.676 5.28 4.749 5.195 3.452 

NIQE min 4.209 3.899 2.729 2.867 1.025 

BRISQUE 

mean 
49.673 47.514 23.258 22.459 15.789 

BRISQUE 

max 
60.312 58.572 33.774 44.027 42.839 

BRISQUE 

min 
42.859 36.064 8.648 3.943 3.108 

PIQE 

mean 
80.299 60.502 15.044 14.709 13.122 

PIQE max 33.459 78.378 25.631 25.884 24.667 

PIQE min 65.744 26.539 8.586 7.688 6.767 
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Figure 7. Comparison of Visual Effects of Images Generated in Areas with Mountain-Road Terrain. 

No-Reference Image Quality Assessment (NR-IQA) Values (NIQE, BRISQUE, PIQE) for Images: 

EDSR8-RGB (5.85, 50.25, 86.05), RCAN (4.64, 47.69, 62.20), RS-ESRGAN (3.31, 22.16, 8.42), 

TS-SRGAN (3.16, 15.75, 8.52), S2SR (2.43, 7.36, 7.48). 

 

Figure 8. Comparison of Visual Effects of Images Generated in Areas with Surface Water Terrain. 

No-Reference Image Quality Assessment (NR-IQA) Values (NIQE, BRISQUE, PIQE) for Images: 

EDSR8-RGB (5.29, 46.00, 76.57), RCAN (4.67, 46.28, 74.49), RS-ESRGAN (3.53, 27.75, 12.08), 

TS-SRGAN (2.56, 13.68, 9.84), S2SR (2.42, 13.97, 10.03). 
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Figure 9. Comparison of Visual Effects of Images Generated in Residential Areas. No-Reference 

Image Quality Assessment (NR-IQA) Values (NIQE, BRISQUE, PIQE) for Images: EDSR8-RGB 

(4.82, 45.85, 74.28), RCAN (3.96, 45.61, 71.41), RS-ESRGAN (3.08, 22.47, 20.85), TS-SRGAN 

(3.12, 27.19, 15.42), S2SR (2.32, 18.27, 13.99). 

4 Conclusions 

In this paper, we address the super-resolution problem of Sentinel-2 satellite remote sensing 

images by proposing a novel Hybrid Attention Transformer model, termed S2SR, aimed at enhancing 

images from a 10-meter resolution to near-2.5-meter high resolution. By integrating channel attention 

and self-attention mechanisms, and leveraging the complementary characteristics of VMamba and 

Transformer, the model significantly boosts its representation capability and reconstruction quality. 

Firstly, we devise an image degradation model based on Generative Adversarial Networks (GANs), 

utilizing KernelGAN to explicitly estimate the degradation kernels of images and incorporating noise 

injection to construct natural low-resolution to high-resolution image pairs. This approach overcomes 

the issue of lacking real high-resolution images in training data for traditional methods, enabling the 

model to train under degradation conditions that are closer to reality. Secondly, we innovatively 

propose Mixed Attention Blocks (MTB) and Cross Attention Mixed Blocks (CAMB), combining the 

advantages of VMamba and Transformer. MTB, by introducing channel attention blocks and a 2D 

Selective Scanning (SS2D) module, effectively utilizes global information and local features. CAMB, 

through an overlapping cross-attention mechanism, enhances cross-window information interaction 

and reduces blocking artifacts. These designs enable the S2SR model to activate more pixels for 

reconstruction, almost perceiving all pixels in the image and restoring correct and sharp textures. In 

experiments, we train and test the model using the SEN12MS dataset and evaluate its performance 

through No-Reference Image Quality Assessment (NR-IQA) metrics, including NIQE, BRISQUE, 

and PIQE. The results demonstrate that the S2SR model outperforms existing state-of-the-art 

methods such as EDSR8-RGB, RCAN, RS-ESRGAN, and TS-SRGAN on various NR-IQA metrics. 

Especially when processing areas with complex geographical features, the S2SR model generates 
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clearer images with sharper edges, showcasing its powerful super-resolution reconstruction 

capability. In summary, the proposed S2SR model in this paper achieves efficient super-resolution 

reconstruction of Sentinel-2 satellite remote sensing images through innovative hybrid attention 

mechanisms and degradation model designs. The model not only performs excellently on quantitative 

metrics but also demonstrates significant improvements in visual effects. Future work can further 

explore more types of remote sensing images and higher-resolution super-resolution reconstruction to 

expand the application scope of the S2SR model. 
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